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Figure 1. Recovering a human motion from multi-shot videos. Top: We take two multi-shot table tennis game videos with shot
transitions as input. We aim to recover two motions of two athletes (Long MA and Zhendong FAN) from two videos, respectively. The
first video is recorded by three shots (“①”, “②”, and “③” ), and the second one is recovered by two shots (“④” and “⑤” ). Bottom: We
recover two motions (Long MA in green and Zhendong FAN in pink), different shots, and camera poses for each multi-shot video. The
recovered motion is aligned with the motion in the videos.

Abstract

In this paper, we present a novel framework designed to001
reconstruct long-sequence 3D human motion in the world002
coordinates from in-the-wild videos with multiple shot tran-003
sitions. Such long-sequence in-the-wild motions are highly004
valuable to applications such as motion generation and mo-005
tion understanding, but are of great challenge to be recov-006
ered due to abrupt shot transitions, partial occlusions, and007
dynamic backgrounds presented in such videos. Existing008
methods primarily focus on single-shot videos, where conti-009
nuity is maintained within a single camera view, or simplify010
multi-shot alignment in camera space only. In this work, we011
tackle the challenges by integrating an enhanced camera012
pose estimation with Human Motion Recovery (HMR) by013
incorporating a shot transition detector and a robust align-014

ment module for accurate pose and orientation continuity 015
across shots. By leveraging a custom motion integrator, we 016
effectively mitigate the problem of foot sliding and ensure 017
temporal consistency in human pose. Extensive evaluations 018
on our created multi-shot dataset from public 3D human 019
datasets demonstrate the robustness of our method in re- 020
constructing realistic human motion in world coordinates. 021

0221. Introduction 023

In recent years, significant advances have been made in 3D 024
human pose estimation, particularly in enhancing the ac- 025
curacy of human motion recovery (HMR)1 from monoc- 026

1In this paper, the “human mesh recovery” refers to recovery in the
camera coordinates and the “human motion recovery” denotes recovery in
the world coordinates. Unless specified otherwise, HMR refers to human
motion recovery.

1



CVPR
#2019

CVPR
#2019

CVPR 2025 Submission #2019. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ular video sequences. HMR has demonstrated extensive027
applications in areas such as human-AI interaction [1, 2],028
human motion understanding [3–6], and motion genera-029
tion [3, 4, 7–25]. While existing methods [26, 27] have030
achieved relatively high performance in recovering mesh031
in camera coordinates, estimating human motion in world032
coordinates remains challenging [28–31] due to inaccurate033
camera pose estimation and the complexity of reconstruct-034
ing human motion spatially.035

Most current progress in 3D human motion community036
mainly benefits from large scale data [26, 27, 29–33], and037
long-sequence videos. These resources enhance estimation038
accuracy for HMR methods and improve the understanding039
and generation of longer motion sequences for tasks such as040
motion understanding [3, 34, 35] and generation [3, 4, 7–25,041
35–51], even when annotations are derived from markerless042
capturing methods like pseudo labels [52–55].043

A promising approach to enlarge the scale of the motion044
databases is to estimate human motions from unlimited on-045
line videos in a markerless manner. However, many long-046
sequence online videos are recorded with multiple shots, re-047
ferred to as multi-shot videos2, especially prevalent in do-048
mains such as sports broadcasting, talk shows, and concerts.049
In filmmaking and television live show, a “shot” denotes an050
individual camera view capturing a specific moment or ac-051
tion from a particular vantage point [56].052

Segmenting multi-shot videos into separate shots in-053
evitably reduces the length of the video sequences, which054
can be detrimental to tasks that benefit from longer se-055
quences, such as long motion generation [51, 57]. This056
limitation is highlighted in the existing datasets [58, 59],057
where the longest clip is less than 20 seconds after segmen-058
tation, as shown in Fig. 2. Moreover, focusing exclusively059
on online single-shot videos diminishes the utilization ratio060
of available online videos and may negatively impact the061
diversity of scenarios represented in the created datasets.062

Therefore, how to address the issue of discontinuities063
caused by shot transitions is notoriously difficult in the064
community. To resolve this problem, previous works [60–065
63] have proposed algorithms to address human mesh re-066
covery in a camera space from movies containing shot067
change between long shots and close-ups.068

However, recovering human motions in world coordi-069
nates from multi-shot videos presents two fundamental070
challenges that remain underexplored. 1) How to align the071
human motion and orientation in the world coordinates dur-072
ing shot transitions? Ensuring continuity of human orien-073
tation and pose across shots is complicated by factors such074
as partial visibility of human body (e.g. transitioning from075
long shot to close-up) and changes in human orientation076

2In this paper, a multi-shot video refers to a long-sequence video con-
taining multiple shot transitions. We assume that the camera intrinsics
remain consistent across different shots within a multi-shot video.

Figure 2. The comparison between the distribution of sequence
lengths in different existing large-scale markerless motion datasets
with ours. The x-axis and y-axis denote the duration time (s) and
percentage of video number, respectively. Our dataset (in green)
contains more portion of long-sequence videos in general.

(e.g. two long shots from different viewpoints). These is- 077
sues, caused by abrupt changes in camera viewpoints, ne- 078
cessitate robust alignment mechanisms. 2) How to recon- 079
struct accurate human motion in world coordinates? Ex- 080
isting approaches employ Simultaneous Localization and 081
Mapping (SLAM) methods to estimate camera parameters, 082
which are then used to project recovered human meshes 083
from camera to world coordinates [28–31]. This process re- 084
quires highly accurate camera estimation and must address 085
motion consistency and foot sliding in the recovered human 086
motion within the world space. 087

Despite these challenges, human motion in multi-shot 088
videos often remain continuous across shots, even as cam- 089
era viewpoints change. This observation suggests that with 090
appropriate handling of shot transitions and camera motion, 091
it is possible to reconstruct consistent and complete 3D hu- 092
man motions throughout multi-shot videos. 093

In this paper, we propose a novel framework HumanMM, 094
Human Motion recovery from Multi-shot videos, to ad- 095
dress these challenges. It integrates human pose estima- 096
tion across shots with robust camera estimation in the world 097
space. First, we develop a shot transition detector to iden- 098
tify frames with shot transitions. To ensure a more robust 099
camera pose estimation, we introduce an enhanced SLAM 100
method incorporating long-term tracking of feature points 101
and exclusion of moving human from bundle adjustment 102
process. We utilize existing HMR method integrated with 103
our enhanced camera estimation to get the initial human pa- 104
rameters for each separated shot. Subsequently, we imple- 105
ment an alignment module to align human orientation based 106
on stereo calibration and smooth human poses through a 107
trained multi-shot HMR encoder, which effectively captures 108
the temporal context of human movements across different 109
shots. Finally, after aligning human and camera parameters 110
between shot transitions, we train a motion decoder and a 111
trajectory refiner to smooth the human pose and mitigate is- 112
sues such as foot sliding, thereby enhancing the overall mo- 113
tion consistency in the reconstructed 3D human motions. 114
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Our contributions can be summarized as follows.115
• We present the first approach to reconstruct human mo-116

tion from multi-shot videos in world coordinates.117
• We introduce HumanMM, a HMR framework for multi-118

shot videos. It includes an enhanced camera trajectory119
estimation method, a human motion alignment module120
and a motion integrator to ensure accurate and consistent121
recovery of human pose and orientation in world coordi-122
nates across different shots in the whole video.123

• We develop a multi-shot video dataset ms-Motion to eval-124
uate the performance of HMR from multi-shot videos,125
based on existing public datasets such as AIST [64]126
and Human3.6M [65]. Extensive experiments on related127
benchmarks verify the effectiveness of our method.128

2. Related Work129

2.1. HMR from One-shot Video130

One-shot videos, captured with a single camera without131
shot transitions, has been extensively studied within the132
community for human mesh and motion recovery.133
Human mesh recovery in camera coordinates can be134
broadly categorized into two approaches: optimization-135
based methods [66–70] and regression-based methods [32,136
71–74]. With the significant advancements of trans-137
former [75], HMR2.0 [26] has surpassed previous methods138
and benefits several downstream tasks related to HMR.139

Although there are several previous works tried to re-140
cover motions in world coordinates with multi-camera cap-141
ture system [64, 76] and IMU-based methods [77, 78] and142
enjoy relatively satisfying results, this setup limits their use143
for applications of infinite in-the-wild monocular videos. To144
address this limitation, several attempts [28–31] integrate145
SLAM into the HMR pipeline by first estimating the cam-146
era pose using SLAM methods, e.g. DROID-SLAM [79] or147
DPVO [80], and then project the recovered human motion148
from camera to world coordinates. To exclude the inconsis-149
tencies caused by dynamic objects, such as moving humans,150
TRAM [29] modifies DROID-SLAM by incorporating hu-151
man masking and depth-based distance rescaling. However,152
DROID-SLAM performs dense bundle adjustment (DBA)153
on feature maps from downsampled images and selects fea-154
tures based only on two consecutive frames rather than155
long-term video sequences [79–81]. Consequently, mask-156
ing significantly reduces the number of informative and157
consistent features, especially when humans occupy large158
portions of the image, leading to inaccuracies. Therefore,159
developing a SLAM method that retains sufficient and rep-160
resentative features for DBA after masking is important.161

2.2. HMR from Multi-shot Video162

Multiple shots are fundamental elements of cinematic story-163
telling and live performances, utilizing various camera po-164
sitions and focal lengths to create immersive and detailed165

viewing experiences for audiences [56]. However, most 166
marker-based motion capture (MoCap) datasets [64, 76, 77, 167
82, 83] consist single-shot videos only, resulting in limited 168
research on HMR from multi-shot videos. 169

Recovering human motion from multi-shot videos in 170
camera coordinates is already challenging. This is because 171
treating each pose estimation result of each shot separately 172
leads to inconsistencies when combining all estimations, 173
caused by partially or fully invisible human bodies across 174
shot transitions. Pavlakos et al. [60] addresses this issue 175
by focusing on shot changes from long shots to close-ups, 176
which are common in film. They develop smoothness con- 177
straints within a temporal Human Mesh and Motion Recov- 178
ery (t-HMMR) model to infer motions during occlusions 179
caused by shot transitions. Advancements in HMR meth- 180
ods [31] for single-shot videos in world coordinates have 181
paved the way for extending HMR to multi-shot videos 182
with varying camera viewpoints. However, aligning human 183
orientation, body pose, and translation continuously across 184
multi-shot videos in world coordinates underexplored. Ef- 185
fective alignment is crucial to maintain motion continuity 186
and coherence, especially when dealing with diverse cam- 187
era perspectives and abrupt transitions between shots. 188

In summary, while substantial progress has been made in 189
HMR from single-shot videos, extending these techniques 190
to multi-shot videos requires addressing additional com- 191
plexities related to camera pose alignment and motion con- 192
sistency across shot transitions. We address this challenge 193
by proposing a novel pipeline that ensures accurate and con- 194
tinuous 3D HMR from multi-shot monocular videos. 195

3. Method 196

In this section, we propose HumanMM to recover human 197
motion from multi-shot videos. The system overview is 198
shown in Fig. 3. Given an input video sequence V = 199
{It}Tt=1 of length T , where It denotes the t-th frame, our 200
objective is to recover human motion in world coordinates. 201
We begin by detecting shot transition frames based on hu- 202
man bounding box (a.k.a. bbox) and 2D keypoints (a.k.a. 203
KPTs) through a shot transition detector (Sec. 3.2). For 204
each clipped shot, we initialize the camera pose (camera 205
rotation and camera translation) and recover initial human 206
motion in world coordinates (Sec. 3.3). The initialized 207
SMPL parameters and camera poses are then fed into a hu- 208
man motion alignment module (Sec. 3.4), which aligns hu- 209
man orientations via camera calibration based on human 2D 210
KPTs and smooth the human pose by incorporating pose in- 211
formation across different shots. Additionally, it refines the 212
entire motion sequence through whole video using a tempo- 213
ral motion encoder ms-HMR. Finally, we introduce a post- 214
processing module for motion integration (Sec. 3.5). 215

3.1. Preliminary: 3D Human Model 216

Our method aims to recover motions in world coordinates 217
in the SMPL [86] format, whose pose at frame t can be 218
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Figure 3. The overview of HumanMM. HumanMM processes multi-shot video sequences by first extracting motion feature such as
keypoints and bounding boxes, using ViTPose [84] and image feature using ViT [85]. These features are then segmented into single-
shot clips via Shot Transition Detection (Sec. 3.2). Initialized camera (camera rotation R and camera translation T) and human (SMPL)
parameters for each shot are estimated using Masked LEAP-VO (Sec. 3.3) and GVHMR [31]. Human orientation is aligned across shots
through camera calibration (3.4.1), and ms-HMR (Sec. 3.4.2) ensures consistent pose alignment. Finally, a bi-directional LSTM-based
motion decoder with trajectory refiner enhances motion consistency and mitigates foot sliding throughout the video.

represented as Mt(θt, βt,Γt, τt) ∈ R6890×3. Here, the219
body pose, body shape, root orientation, and translation are220
θt ∈ R23×3, βt ∈ R10, Γt ∈ R3, and τt ∈ R3, respectively.221
We use K2D

t to denote human 2D KPTs at each frame t.222

3.2. Shot Transition Detector For Multi-shot Video223

Our algorithm begins with shot transition detection in one224
video. As shown in Fig. 3, the shot transition detector has225
three key components, scene transition detector, bounding226
box (a.k.a. bbox) tracking, and human keypoints tracking.227
(1) Scene change transition detector. Initially, we employ228
the SceneDetect [87] algorithm to identify scene changes229
based on significant variations in the background. How-230
ever, the SceneDetect fails to detect shot transitions when231
background changes are unnoticeable, illustrated in Fig. 4.232
Subsequently, we leverage the following modules to bridge233
the gap. (2) Bbox tracking for shot transition. As a shot234
change often accompanies with a sudden change of hu-235
man subject size, we track humans in a video via mmtrack-236
ing [88]. Consequently, we compute the Intersection over237
Union (IoU) between neighbor bboxes and identify a shot238
transition when the IoU falls smaller than a manually tuned239
threshold. (3) Human pose tracking for shot transition de-240
tection. To achieve a finer granularity, we additionally intro-241
duce human 2D KPTs to detect extreme corner shot changes242
in a video. By thresholding the IoU of corresponding key-243
points between neighbor frames, we can accurately identify244
shot transitions even with subtle human movements.245

As each separate module cannot identify all kinds of shot246
transitions, the three modules are jointly used to clip a video247
into several sub-sequences serially.248

3.3. Human Motion and Camera Pose Estimation249
For Each Shot250

After obtaining the clipped videos, our next goal is to es-251
timate the camera pose and SMPL parameters in the world252

Figure 4. Shot transition detection examples. Examples (a), (b),
and (c) illustrate multi-shot scenarios in online videos. (a) shows
scene transitions detectable by SceneDetect. (b) illustrates signifi-
cant position changes undetectable by SceneDetect but resolvable
with bbox tracking-based method. (c) shows pose or orientation
transition, requiring pose tracking-based methods as they cannot
be addressed by either SceneDetect or bbox tracking.

coordinates for each clipped video. The estimated camera 253
pose and motions for each shot will be used to construct the 254
whole motion sequence in the next stage (Sec. 3.4). 255

How to estimate the camera parameters accurately? Our 256
approach for camera parameter calculation is based on a 257
visual odometry (VO) estimation method, LEAP-VO [81]. 258
Utilizing the CoTracker method [89], LEAP-VO estimates 259
the visibility and trajectories of N selected points by ana- 260
lyzing image gradients across the video sequence. LEAP- 261
VO subsequently computes confidence scores for each tra- 262
jectory, retaining only those with high confidence while 263
discarding trajectories shorter than a predefined threshold. 264
The remaining trajectories undergo bundle adjustment (BA) 265
within a fixed window size to estimate the camera poses. 266

However, simply applying LEAP-VO in the camera esti- 267
mation process is still unsatisfactory in most human-centric 268
scenarios. The primary limitation stems from the dynamic 269
movements of human subjects, which typically occupy a 270
substantial portion of each image in human-centric videos. 271
This dynamic presence introduces noise into the camera 272
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pose estimation in world coordinates, as the estimation pro-273
cess relies heavily on the relationship between the cam-274
era and the static environment. To address this issue, we275
propose a Masked LEAP-VO algorithm. Our approach in-276
volves inputting the image It and the human bbox at frame t277
into SAM [90] to generate a human mask. We then assign a278
visibility value of zero to points within the human mask, ef-279
fectively excluding these trajectories from the BA process.280
For clarity, we denote SBA as the window size of BA, n̂ de-281
notes the number of filtered point trajectories, and wij,n̂ as282
the normalized weight based on confidence score and visi-283
bility. For estimating the camera poses G = {R,T} of ori-284
entation and translation, the reprojection loss function for285
BA can then be formulated as follows,286

G = argmin
G,di,n̂

∑
i

∑
j∈|i−j|≤SBA

∑
n̂

wij,n̂||F(Gi,Gj , di,n̂) − Πij(pi,n̂)||,287

where F(Gi,Gj , di,n̂) denotes the point positions calcu-288
lated by camera pose G at frame i and j with depth di,n̂.289
Πij(pi,n̂) denotes the position for project position of pi,n̂290
from frame i to j. Consequently, we obtain the camera ro-291
tation Rt and translation Tt from camera pose Gt at t.292
Recovering human motion in world coordinates with es-293
timated camera parameters. Given an input video, we294
feed the estimated camera parameters (Rt and Tt) into the295
state-of-the-art motion recovering model, GVHMR [31],296

θwt , β
w
t ,Γ

w
t , τ

w
t = GVHMR(It,Rt,Tt). (1)297

Initialized human parameters θwt , β
w
t ,Γ

w
t , τ

w
t and camera298

parameters Rt,Tt will input to human motion alignment.299

3.4. Aligning Human Motion Between Shots300

Based on initialized world motion for each individual shot,301
the subsequent question is how to merge discontinuous mo-302
tions from different shots into a continuous motion sequence303
as a whole in world coordinates. A straightforward solution304
is to align all motion sequences to the world coordinate sys-305
tem of the first shot. However, finding the correspondence306
between different shots is still under-explored and challeng-307
ing. To resolve this issue, we decompose the motion param-308
eters into camera-dependent and camera-independent ones.309
The former (Sec. 3.4.1) achieves alignment between shots310
via human orientation alignment based on camera calibra-311
tion, whereas the latter (Sec. 3.4.2) is a trainable module to312
enhance the continuity of human motion sequence. These313
two key designs ensure a consistent motion sequence be-314
tween frames when encountering shot transitions.315

3.4.1 Aligning Human Orientations Between Shots316

After obtaining the initial SMPL and camera parameters317
{θit, βi

t ,Γ
i
t, τ

i
t ,R

i
t,T

i
t} for each shot, directly concatenat-318

ing motions between shots result abrupt changes of human319
poses and orientations. To address this issue, we intro-320
duce the Orientation Alignment Module (OAM), as shown321

Figure 5. Human orientation alignment module. Following a
shot transition after the foremost purple human mesh (shot ① cap-
tured by camera C0), the unaligned (blue) and aligned (green) mo-
tions are captured as shot ② and shot “③” by camera C

′
0 and C1,

respectively. C
′
0 = C0. To achieve human orientation alignment

from shot “①” to “③”, the camera rotation matrix from C
′
0 to C1

is computed and applied as the offset of human orientation.

in Fig. 5, to align human orientations. As the whole motion 322
sequence is continuous, we have the following assumption. 323

324
Assumption 1 Human orientations and translations dur- 325
ing the shot transition in world coordinates are continuous. 326

To align the orientations between two frames with shot tran- 327
sition under Assumption 1, we decompose the human ori- 328
entation with shot transitions in world coordinates as, 329

R(Γworld) = RδcamR(Γview), (2) 330

where Rδcam represents the camera rotation on the Y-axis 331
between current t-th and previous t− 1-th frame, Γview de- 332
notes the human orientation estimated by the current shot, 333
and R(·) : R3 → R9 is the mapping from axis angle to rota- 334
tion matrix. As Γview in current shot can be estimated inde- 335
pendently, mentioned in Sec. 3.3, obtaining accurate Γworld 336
in Eq. (2) remains a key challenge to estimate the relative 337
camera rotation Rδcam between frames in shot transitions. 338
Estimating the relative camera pose Rδcam between tran- 339
sition frames. Different from our approach of estimat- 340
ing camera pose in each shot (Sec. 3.3), we do not 341
mask the human subject when estimating camera rotation 342
Rδcam . Instead, we use human 2D KPTs as explicit fea- 343
ture matching. Specifically, we filter out unmatched key- 344
points based on their visibility and unaligned direction us- 345
ing RANSAC [91], effectively addressing camera pose es- 346
timation during shot transitions. This procedure is referred 347
to as Camera Calibration (a.k.a. epipolar-geometry-based 348
camera extrinsics estimation), and is detailed below. 349

In Camera Calibration, we assume that the human trans- 350
lations remain unchanged across the shot transition, imply- 351
ing that only the camera’s orientation changes (i.e. Assump- 352
tion 1). Consequently, we calculate the orientation offset by 353
determining the change in camera orientation using cam- 354
era calibration. We begin by extracting human 2D KPTs 355
from two consecutive frames during the shot transition. Due 356
to the shot transition, the visibility of 2D KPTs may vary, 357
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Figure 6. ms-HMR Structure. The initial human pose parame-
ters θ across multiple video shots are input into a transformer with
shot-index-based positional encoding. This enables ms-HMR to
generate consistent human poses across all shots in the video.

e.g. occlusion in some shots. Therefore, we employ ED-358
Pose [92] to filter out invisible 2D KPTs between shot tran-359
sition frames. Subsequently, RANSAC identifies matching360
2D KPTs corresponding to the most possible camera rota-361
tion direction. These matched 2D KPTs facilitate the esti-362
mation of the aligned camera rotation Rδcam . The detailed363
estimation process is as follows.364

We denote the detected 2D KPTs of365
two frames in the shot transition as S1 =366
[(x

(1)
1 , y

(1)
1 ), (x

(2)
1 , y

(2)
1 ), · · · , (x(N)

1 , y
(N)
1 )]⊤ ∈ R2×N367

and S2 = [(x
(1)
2 , y

(1)
2 ), (x

(2)
2 , y

(2)
2 ), · · · , (x(N)

2 , y
(N)
2 )]⊤ ∈368

R2×N . The essential matrix E = [T]×R should satisfy the369
following orthogonal property such that,370

S⊤
1 ES2 = 0. (3)371

Once E is obtained by solving Eq. (3), we enforce the rank-372
2 constraint on E through SVD decomposition and subse-373
quently derive the aligned camera rotation Rδcam between374
two frames (cf . Hartley et al. [93] for more details).375

In summary, we reformulate the alignment problem of376
human orientation in shot transitions as estimating the rel-377
ative camera rotation Rδcam between frames. Accordingly,378
we obtain the camera rotation Rδcam via camera calibration.379

3.4.2 Aligning Human Poses Between Shots380

In shot transition, video sequences recorded by two shots381
are often with various occlusions. However, unoccluded382
body parts in two shots can be complementary to each other383
for motion alignment. Thus, we introduce the multi-shot384
HMR (ms-HMR, i.e. EM (·)) module to refine the whole mo-385
tion sequence. As shown in Fig. 6, the ms-HMR is a Trans-386
former encoder-like architecture, whose input and output387

Dataset Duration(s) Videos FPS Max Length Min Length Shots

ms-Motion 23.7 600 30 1478 314 2, 3, 4

Table 1. Statistics of the ms-Motion dataset. By shots, we mean
the number of shot transitions in a single video.

are the estimated global motion and the refined global mo- 388
tion, respectively. The process can be formulated as, 389

ϕ1, ϕ2, · · · , ϕT = EM (θ1, θ2, · · · , θT ), (4) 390

where ϕ∗ denotes the refined motion of each frame. With 391
this design, our method can adapt to diverse occlusions of 392
human body brought by shot transitions. 393

3.5. Post-processing Module for Motion Integration 394

Trajectory and Foot Sliding Refiner. Inspired by Shin 395
et al. [30], we introduce a bi-directional LSTM to recover 396
foot-ground contact probabilities pct , and root velocity vt as, 397

398pct , vt = LSTM(ϕm
1 ,Γ1, F(I1), ϕ

m
2 ,Γ2, F(I2), · · · ,
ϕm
T ,ΓT , F(IT )),

(5) 399

where F(·) denotes the image feature of each frame ex- 400
tracted by ViT [85]. Accordingly, the contact probabilities 401
pct , and velocity vt are supervised by the ground-truth labels 402
with MSE loss. Besides, we extend the trajectory refiner in 403
WHAM [30] to improve the human trajectory estimation. 404

4. Benchmarking Multi-shot Motion Recovery 405

Dataset Construction. To create a multi-shot 3D hu- 406
man motion dataset, we introduce ms-Motion by process- 407
ing existing public 3D human datasets with multiple cam- 408
era settings and ground truth human and camera parameters, 409
specifically AIST [64] and Human3.6M (H3.6M) [65]. In 410
our construction pipeline, we randomly separate each origi- 411
nal one-shot video into several clips. Then, we choose each 412
clip from different shots and concatenate them together as 413
one video recorded by multiple shots. For example, AIST 414
provides each video with eight cameras C0, C1, ..., C7 from 415
different view point and we choose a video and split it into 416
5 clips at t0, t1, ..., t4. For frames in these separated 417
clips, we choose frames shot by a random camera for each 418
clip and combine five clips as one multi-shot video. There- 419
fore, we construct a multi-shot version of AIST and H3.6M, 420
which are named ms-AIST and ms-H3.6M subsets. Then 421
we combine them and name this new dataset ms-Motion. 422
The detailed statistics of ms-Motion are shown in Tab. 1. 423
We do not compare with other existing 3D human datasets 424
as they contain limited number of multi-shot videos. 425
Benchmark Evaluation Protocol. To evaluate the perfor- 426
mance of our proposed methods on multi-shot videos, our 427
target is to evaluate metrics for accurately reflecting the per- 428
formance on videos with shot transitions. To this end, we 429
use Root Orientation Error (a.k.a. ROE in deg ) to measure 430
the performance of the proposed method on human orienta- 431
tion alignment across different shots. Besides, we use Root 432
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Dataset Models 2-Shot 3-Shot 4-Shot

RTE↓ ROE↓ Jitter↓ Foot-Sliding↓ RTE↓ ROE↓ Jitter↓ Foot-Sliding↓ RTE↓ ROE↓ Jitter↓ Foot-Sliding↓

ms-AIST SLAHMR [2023] 9.62 96.26 62.59 3.26 10.33 101.36 72.39 4.43 12.11 104.07 80.37 16.52
WHAM [2024] 4.39 84.48 25.24 2.75 5.14 89.84 24.06 2.99 5.57 90.07 26.29 3.62
GVHMR [2024] 6.20 96.58 34.87 7.65 7.55 99.69 34.46 9.42 8.96 104.53 35.67 9.78
Ours 2.56 69.23 33.27 2.66 3.64 67.71 35.07 3.55 4.55 70.31 39.49 4.09

ms-H3.6M SLAHMR [2023] 16.67 111.97 37.80 7.93 16.91 118.46 52.23 9.96 17.85 116.72 65.15 11.58
WHAM [2024] 11.41 82.42 18.40 5.09 12.36 84.85 18.87 5.03 12.91 90.34 18.40 5.69
GVHMR [2024] 6.94 81.93 18.45 8.80 85.25 58.26 18.36 10.62 9.12 91.63 19.47 10.65
Ours 3.65 53.39 19.05 4.17 5.33 58.26 17.35 4.62 6.20 61.22 19.77 5.12

Table 2. Quantitative comparison of different HMR methods on ms-Motion dataset. We record the results for ms-AIST and ms-H3.6M
separately. Our proposed method has achieved the best performance in RTE and ROE across ms-Motion among these methods.

Translation Error (a.k.a. RTE in m) to assess the perfor-433
mance of the proposed method on global trajectory recov-434
ery. Jitter ( 10m

fps3 ) is also used to evaluate the stability of435
recovered human pose from multi-shot videos. We also in-436
clude foot sliding (cm), the averaged displacement of foot437
vertices during contact with the ground, to assess the preci-438
sion of recovered motion in the world coordinates [30].439

5. Experiment440

5.1. Datasets and Metrics441

Evaluation Datasets. To evaluate the performance of our442
proposed pipeline for multi-shot videos, we use ms-Motion443
dataset and EMDB-1 dataset [77] with self-added noise for444
the evaluation of ablation study. For camera trajectory es-445
timation, we use EMDB-1 and EMDB-2 split [77] as they446
contain the GT moving camera trajectory. Our self-created447
dataset contains 600 multi-shot videos, 42.7K frames, to-448
taling 237 minutes. EMDB-1 split contains 17 video se-449
quences totaling 13.5 minutes and EMDB-2 split contains450
25 sequences totaling 24.0 minutes.451
Evaluation Metrics. For shot detection we use Recall, Pre-452
cision and F1 Score as evaluation metrics. For 3D human453
pose estimation-related tasks, we use ROE, RTE, jitter, and454
foot-sliding for evaluating the human motion recovery re-455
sults on multi-shot videos. For the ablation study of our456
proposed pipeline, we evaluate the Procrustes-aligned Mean457
Per Joint Position Error (a.k.a. PA-MPJPE) and Per Vertex458
Error (a.k.a. PVE) as additional metrics besides previous459
mentioned ones. For camera pose estimation, we use abso-460
lute trajectory error (a.k.a. ATE) (m), Relative Pose Error461
(a.k.a. RPE) rotation (deg), and RPE translation (m).462

5.2. Implementation Details463

The ms-HMR, the trajectory, and foot sliding refiner are464
trained on the AMASS [82], 3DPW [83], Human3.6M [65],465
and BEDLAM [94] datasets, evaluate on EMDB and our466
ms-Motion. During training, we introduce random rota-467
tional noise (ranging from 0 to 1 radian) along the y-axis to468
the root pose Γ and random noise to the body pose θ at ran-469
dom positions to simulate the inaccuracies of pre-estimated470

Methods ms-Motion

Recall↑ Precision↑ F1 Score↑
Scenes Detect (SD) [87] 0.74 0.72 0.70
SD+Bbox Tracking (Bbox) 0.88 0.85 0.86
SD+Bbox+Pose Tracking 0.96 0.88 0.92

Table 3. Comparison between difference shot detection algo-
rithms. We evaluate our shot transition detector on our proposed
multi-shot video human motion dataset ms-Motion.

human motions caused by shot transitions in multi-shot 471
videos. This strategy enables the network to robustly re- 472
cover smooth and consistent human motion from noisy ini- 473
tial parameters. The benchmark test results were obtained 474
after training for 80 epochs on one NVIDIA-A100 GPU. 475

5.3. Main Results: Comparison of Global Human 476
Motion Recovery Results on the Benchmark 477

We compare our proposed method HumanMM with 478
several state-of-the-art HMR methods (SLAHMR [28], 479
WHAM [30] and GVHMR [31]) on our proposed bench- 480
mark ms-Motion. As illustrated in Tab. 2, our proposed 481
method has achieved the best performance for RTE and 482
ROE through videos with all numbers of shots across ms- 483
AIST and ms-H3.6M, indicating that our method recon- 484
structs both the global human motion and orientations in 485
the world coordinates more accurately and robustly. For the 486
foot sliding metric, our method also performs as the best on 487
ms-H3.6M across all numbers of shots. 488

5.4. Ablation Studies 489

Human-centric Scene Shot Boundary Detection Evalu- 490
ation. To evaluate the performance of our proposed Shot 491
Transition Detector, we test the algorithm on our proposed 492
multi-shot human motion recovery benchmark and compare 493
the output frame list of shot transitions with the ground 494
truth (GT) of our dataset. As shown in Tab. 3, by apply- 495
ing the proposed finer granularity shot detection methods, 496
the number of recall, precision, and F1 score all increases 497
consistently. The combination of three steps (ScenesDetect, 498
bbox tracking, and pose tracking) has achieved 0.96, 0.88, 499
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Figure 7. Qualitative comparison of different HMR methods on ms-Motion dataset. The side view of the rendered mesh for input
mutli-shot video is shown in (a), while the top view is shown in (c). We also draw the comparison of the human trajectory as shown in (b).
Our method is the most similar as GT in both rendered motion and trajectories among these methods.

Methods PA-MPJPE↓ PVE↓ RTE↓ ROE↓ FS(foot sliding)↓
Baseline (Concat) 106.48 122.15 10.86 91.55 14.91
w/o HumanMM 78.24 85.77 3.89 50.63 3.54
w/o OAM 73.56 79.64 6.61 76.74 4.45
w/o traj. ref. 50.49 75.77 4.06 47.68 7.84
HumanMM (Ours) 50.49 75.77 3.54 47.68 3.28

Table 4. Ablation studies on different com-
binations of our modules. We evaluate Hu-
manMM on EMDB-1.

Methods ATE↓ RPE trans↓ RPE rot↓
DPVO (w/o mask) 0.48 1.85 1.06
Masked DPVO 0.48 1.57 0.97
LEAP-VO (w/o mask) 0.50 0.93 0.97
Ours 0.51 0.92 0.95

Table 5. Camera tracking results on EMDB
1 [77]. Our method has achieved ∼ 50% ↓ on
RPE trans. than that of the original DPVO and
perform the best in RPE rot.

Methods ATE↓ RPE Trans.↓ RPE Rot.↓
DPVO (w/o mask) 0.48 1.07 1.26
Masked DPVO 0.50 0.86 1.21
LEAP-VO (w/o mask) 0.50 0.83 1.21
Ours 0.49 0.83 1.19

Table 6. Camera tracking results on EMDB
2 [77]. Our method performs best. Besides, the
masking operation is generally effective.

and 0.92 on the recall, precision, and F1 score, respectively,500
which indicates a comparable performance in shot bound-501
ary detection. Besides, as can be seen in the results, the lat-502
ter two steps of shot detection contribute to the fine-grained503
final results significantly and jointly.504

Key modules in the Proposed Method. We compare our505
methods with four variants on EMDB with noise dataset, as506
shown in Tab. 4, ms-HMR is the key component for the im-507
provement in PA-MPJPE and PVE, which indicates a more508
accurate modeling of the whole motion sequence. This de-509
sign serves as a recovery module to estimate some invisi-510
ble body parts in some shots. Additionally, the orientation511
alignment module (OAM, in Sec. 3.4) is also a critical block512
for accurate human orientation estimation, indicated by the513
metric ROE. This module helps to model the global human514
motion between shots. For foot sliding, the results in Tab. 4515
also show that the trajectory refiner (Sec. 3.5) in our method516
helps mitigate the foot sliding issue.517

Comparison on Camera Trajectory Estimation. To eval-518
uate the performance of our proposed camera trajectory es-519
timation method Masked LEAP-VO, we evaluate the cam-520
era trajectory accuracy on EMDB 1 and EMDB 2. For521
more convenient comparison, we introduce two baselines,522
DPVO [80], which has been widely used in HMR meth-523
ods such as WHAM [30] and GVHMR [31], and LEAP-524
VO [81]. To provide more intuition about the insights of525
masking dynamic humans in the video, we also implement526
a variant, Masked DPVO, by applying SAM at the patchify527
stage of DPVO to exclude patches containing human pix-528
els. As shown in Tab. 5 and Tab. 6, compared with base-529
line methods, our key design of masking dynamic human530
subjects improves the result in both RPE Translation and531
RPE Rotation while maintaining competitive ATE. This re-532

sult indicates the effectiveness of the design of masking dy- 533
namic human subjects in the process of camera trajectory 534
estimation. Compared with the DPVO baseline, our method 535
achieves ∼ 50% ↓ RPE translation on EMDB 1. 536

6. Conclusion and Discussion 537

Conclusion. In this paper, we introduce HumanMM, the 538
first framework designed for human motion recovery from 539
multi-shot videos in world coordinates. HumanMM ad- 540
dresses the challenges inherent in multi-shot videos by 541
incorporating three key components: an enhanced cam- 542
era trajectory estimation method called masked LEAP-VO, 543
a human motion alignment module that ensures consis- 544
tency across different shots, and a post-processing mod- 545
ule for seamless motion integration. Extensive experi- 546
ments demonstrate that HumanMM outperforms existing 547
human motion recovery methods across various bench- 548
marks, achieving state-of-the-art accuracy on our newly cre- 549
ated multi-shot human motion dataset, ms-Motion. 550
Limitations and Future Work. While HumanMM repre- 551
sents an dvancement in human motion recovery from multi- 552
shot videos in world coordinates, its performance may de- 553
cline when faced with an excessive number of shot tran- 554
sitions. Despite these challenges, HumanMM provides a 555
solid baseline for human motion recovery from multi-shot 556
videos and can be employed in annotating markerless hu- 557
man motion datasets. Our newly introduced dataset, ms- 558
Motion, offers a valuable benchmark for evaluating general 559
human motion recovery methods in world coordinates, es- 560
pecially regarding their performance on multi-shot videos. 561
Based on the proposed method, our future work aims to en- 562
large the related datasets for larger-scale motion databases. 563
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