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Abstract

Uni6D is the first 6D pose estimation approach
to employ a unified backbone network to extract
features from both RGB and depth images. We
discover that the principal reasons of Uni6D per-
formance limitations are Instance-Outside and
Instance-Inside noise. Uni6D’s simple pipeline
design inherently introduces Instance-Outside
noise from background pixels in the receptive
field, while ignoring Instance-Inside noise in the
input depth data. In this paper, we propose a
two-step denoising approach for dealing with the
aforementioned noise in Uni6D. To reduce noise
from non-instance regions, an instance segmenta-
tion network is utilized in the first step to crop and
mask the instance. A lightweight depth denoising
module is proposed in the second step to calibrate
the depth feature before feeding it into the pose
regression network. Extensive experiments show
that our Uni6Dv2 reliably and robustly eliminates
noise, outperforming Uni6D without sacrificing
too much inference efficiency. It also reduces the
need for annotated real data that requires costly
labeling.

1 INTRODUCTION

6D pose estimation is critical for upcoming applications
including intelligent robotic grasping(Collet et al., 2011;
Tremblay et al., 2018), autonomous driving(Geiger et al.,
2012; Xu et al., 2018; Chen et al., 2017), and augmented
reality(Marchand et al., 2015). The basic purpose of 6D
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pose estimation is to identify an object’s 6D pose, including
its location and orientation. As RGB-D sensors become
more possible and inexpensive, they have the potential to
augment the typical RGB image with depth information on a
per-pixel basis and offer direct geometry information, mak-
ing it a more appealing data source for 6D pose estimation.
The only fly in the ointment is that it inevitably introduces
physical noise when acquiring depth information(Zhang,
2012; Mallick et al., 2014; Zhang and Funkhouser, 2018;
Sweeney et al., 2019; Ji et al., 2021).

Given the heterogeneity of RGB and depth data, previous
state-of-the-art methods(Wang et al., 2019; He et al., 2020,
2021) typically handle them independently with two back-
bone networks separately, in which, 2D CNN is used for
RGB data and PointNet(Qi et al., 2017a) or PointNet++(Qi
et al., 2017b) for depth data. Recently, a new approach
called Uni6D(Jiang et al., 2022) was developed to overcome
the "projection breakdown"(Jiang et al., 2022) problem by
inserting extra UV information, i.e., coordinates of each
pixel, into the RGB-D input. It uses basic framework of
Mask R-CNN(He et al., 2017), and especially leverages the
unified CNN backbone to extract features from RGB and
depth images possible, resulting in an efficient and straight-
forward realization pipeline. However, Uni6D ignores the
potential pitfalls hidden in its straightforward pipeline and
the input depth data, severely limiting its performance.

We find that the main sources of Uni6D’s potential pit-
falls are two types of noise: instance-outside noise intro-
duced by the RoI-based 6D pose estimation methodology,
and instance-inside noise from the unreliable depth data.
As shown in Fig. 1(a), the instance-outside noise comes
from the background pixels outside the target instances, and
Uni6D introduced it in the pose regression with its detection
and pose regression pipeline. Since the deep features of
CNN have corresponding receptive fields, the information
out of the instance will also be included in the RoI features
obtained by the RPN and RoI Align. Because the feature
outside the instance isn’t useful for pose estimation, this
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(a)

(b)

(c)

(d)

Figure 1: Illustration of noise problem in 6D pose estima-
tion. (a) Examples of instance-outside noise, which comes
from background pixels outside the target instances. (b) Ex-
amples of instance-inside noise, which comes from the unre-
liable depth data. (c) Quantitative results of instance-inside
noise according to the depth reprojection error statistics.
(d) Uni6D results under various real data percentages and
noise elimination methods. Eliminating the noise improves
performance and reduces the need for real data in training
set.

background information can even interference the pose re-
gression. For the instance-inside noise, it is introduced by
depth sensor during capturing depth information, as exam-
pled in Fig. 1(b).

We construct several corresponding experiments to quantify
the above noise and its impact. We provide the statistic of
instance-inside noise of the YCB-Video(Xiang et al., 2018)
dataset in Fig. 1(c), by calculating the depth deviation ac-
cording to depth reprojection error, which indicates that
there is depth noise in the dataset. Then, in Fig. 1(d), we
investigate the effects of performance by incrementally re-
moving these kinds of noise. To filter out instance-outside
noise, we crop and mask the RoI of each instance using the
ground truth bounding box and mask. To reduce instance-
inside noise, we use the depth calculated by reprojection as
the ground truth. We can observe that removing these two
types of noise gradually can significantly improve the accu-
racy on the YCB-Video dataset and reduce the need for real
data to train the model. According to the preceding experi-
mental results, we believe that each type of noise will have
an effect on the model’s performance. Worse still, limited by
the high cost of annotation, existing datasets such as YCB-
Video(Xiang et al., 2018) and LineMOD(Hinterstoisser
et al., 2011) include a lot of synthetic data without depth
noise in training set and put the real data with depth noise
in test set. This train-test gap, as shown in Fig. 1(c), accen-
tuates the unfavorable effect of depth noise.

To this end, we propose Uni6Dv2, a simple yet effective
two-step denoising 6D posture estimation method. Uni6Dv2
predicts the instance segmentation mask of each instance
from the RGB-D image in order to filter out extraneous non-
instance pixels in the first step. A depth denoising module is
then utilized in the second step to correct the depth feature
with the relevant depth normal and XY before feeding it
into the succeeding pose regression network.

Overall, the main contributions of this work are as follows:

• We uncover different types potential noise that severely
limit the performance of RoI-based 6D pose estimation
methods, and categorize them as instance-outside noise
and instance-inside noise;

• We propose a two-step denoising pipeline to address
the noise problem in the original Uni6D, which uses the
instance segmentation network to filter out the instance-
outside noise in the first step and a depth denoising
module to handle instance-inside noise in the second
step;

• The proposed approach achieves 96.8% on the AUC
ADD-S metric for the YCB-Video dataset, advancing
the state-of-the-art method FFB6D by 0.2% . In partic-
ular, our approach significantly outperformed Uni6D
with a margin of 1.6% given 100% real training data
and a margin of 20.1% given 0% real training data.
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2 RELATED WORK

2.1 6D Pose Estimation

In accordance with the way of 6D pose parameter estima-
tion, we can classify 6D pose estimation methods into two
categories: keypoint-based and RoI-based methods.

Keypoint-based Methods. The 6D pose parameters in
keypoint-based methods are estimated using a PnP algo-
rithm that matches the predicted keypoints with the tar-
get keypoints. Previous methods typically predict 2D key-
points through direct regression(Rad and Lepetit, 2017;
Tekin et al., 2018; Hu et al., 2019) or heatmaps(Kendall
et al., 2015; Newell et al., 2016; Oberweger et al., 2018).
Considering robustness in truncated and occluded scenes,
PVNet(Peng et al., 2019a) proposes a voting network to
obtain the dense prediction of 2D keypoints of objects and
utilizes an uncertainty-driven PnP algorithm to improve per-
formance. Recent methods(He et al., 2020, 2021) extend
keypoint detection to 3D space by predicting each 3D point
semantic label and offsets to pre-defined keypoints. To
calculate keypoints in the camera coordinates system and
distinguish different objects, an iterative voting mechanism
is adopted to vote for the best prediction of keypoints based
on the offsets and semantic labels. The final 6D pose param-
eters are predicted by an iterative least-squares regression
algorithm, fitting predicted 3D keypoints with correspond-
ing pre-defined 3D target keypoints. However, the iterative
voting and regression operations in these methods are time-
consuming and heavy in practical applications.

RoI-based Methods. To estimate 6D pose of a single in-
stance from the image with multiple instances, RoI-based
methods crop each instance by the candidate RoI predic-
tion and then feed each RoI region image patch or feature
into the pose regression network to estimate the 6D pose
directly. PoseCNN(Xiang et al., 2018) utilizes two RoI
pooling layers(Girshick, 2015) to extract the correspond-
ing visual feature to regress the quaternion representing
rotations. Based on the RoI feature from RGB images, fol-
lowing methods(Billings and Johnson-Roberson, 2019; Li
et al., 2018; Wang et al., 2021) improve the computation
method of rotation as well as translation and introduce ex-
tra class and geometric priors. However, the insufficiency
of geometry information limits the performance of these
methods. To make use of geometry information, DenseFu-
sion(Wang et al., 2019) and ES6D(Mo et al., 2022) crop
the RoI region from both RGB and depth images and then
concatenate them as the input of pose regression network.
In practice, the crop and RoI-pooling operations in these
CNN pipelines lead to spatial transformation, which breaks
the 2D-3D projection equation. Uni6D(Jiang et al., 2022) is
the first to expose the "projection breakdown" problem and
solve it by adding extra UV information into the RGB-D in-
put. Hence, it can adopt a single CNN backbone to process
heterogeneous data sources. However, the performance of

the method degrades when there is noise in the candidate
RoI regions. In the following subsection, we conduct an
in-depth and systematic analysis of the denoising operations
in 6D pose estimation, which can alleviate the interference
from noise.

2.2 Denoising Operations in 6D Pose Estimation

Through the investigation of the existing 6D pose estimation
methods, the potential denoising operations mainly include
two types: vote-based denoising and mask-based denoising.

Vote-based Denoising. The voting mechanism iteratively
selects the centroid or keypoints based on the dense pixel-
level prediction. Pixels that contribute to the voting process
are devoted to predicting the final pose estimation. Con-
versely, the rest pixels viewed as inaccurate predictions are
not involved in the final decision, thus performing denoising
in an implicit way. PoseCNN(Xiang et al., 2018) estimates
2D object centroid by the vote of the pixel-wise prediction
for the object center direction vector, instead of directly
regressing the coordinates. The voting mechanism filters
out the predictions of unvoted pixels, alleviating the interfer-
ence caused by noise. For keypoint prediction, PVNet(Peng
et al., 2019a) adopts the same vote mechanism to estimate
the location of 2D keypoints by the pixel-wise vector-field
prediction. To extend keypoints detection from 2D to 3D,
PVN3D(He et al., 2020) and FFB6D(He et al., 2021) employ
a voting mechanism to predict 3D keypoints and estimate
the 6D pose by fitting the predicted keypoints to their pre-
defined counterparts iteratively. The fitting algorithm is able
to suppress noise in the instance-inside points. However, the
iterative voting and fitting process used for denoising are
inefficient and heavy, accounting for a significant portion of
the total frame processing time.

Mask-based Denoising. Prior works use a mask opera-
tion to remove noise from the instance-outside regions that
can interfere with the target instance feature representation
and affect the 6D pose regression. This is typically ac-
complished using a two-stage approach(Xiang et al., 2018;
Billings and Johnson-Roberson, 2019; Li et al., 2018; Wang
et al., 2020; Mo et al., 2022), in which an instance segmenta-
tion network is first used to generate semantic segmentation
masks and bounding boxes for each target instance. In the
second stage, a pose estimation network is trained on the
cropped or masked RoI features to predict the 6D pose.

To further mitigate the interference from the instance-
outside noise, recent work ES6D(Mo et al., 2022) estimates
6D pose based solely on the point with the highest confi-
dence score. However, the instance-outside region is still
present in the input of the network for estimate 6D pose. To
comprehensively address the noise issue, we systematically
analyze the source of noise and propose a novel two-step
pipeline with a lightweight depth denoising module.
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3 APPROACH

Our work can be viewed as an extension of Uni6D(Jiang
et al., 2022) with a novel two-step denoising pipeline. We
first review Uni6D (Sec. 3.1), and then give the details of
the proposed method, including the denoising processes of
instance-outside noise and instance-inside noise (Sec. 3.2).
Finally, the details of loss function are provided (Sec. 3.3).

3.1 Review of Uni6D: a Unified CNN Framework for
6D Pose Estimation

Uni6D addressed the "projection breakdown" problem,
which arises from the CNN and spatial transformations,
by adding extra visible point coordinates in both the im-
age plane and 3D space (Plain UV, XY) with depth nor-
mal(NRM) into RGB-D images. This enables simultaneous
feature extraction of RGB and depth data using a unified
network. It took the Mask R-CNN structure and extended
it with an extra RT head for estimating rotation and transla-
tion parameters, and an abc head regressing visible points
(a, b, c) from the CAD model to directly estimate the 6D
pose. It achieved impressive results on existing 6D pose
estimation benchmarks. However, it suffered from instance-
outside noise caused by background pixels and ignored
instance-inside noise in the input depth data. In the follow-
ing section, we will present our two-step denoising method
to tackle these challenges.

3.2 Comprehensive Denoising Pipeline

To effectively suppress the instance-outside and instance-
inside noise, we propose a novel two-step denoising pipeline
called Uni6Dv2, as illustrated in Fig. 2. Our method builds
upon the basic methodology of Uni6D, which involves
adding various UV information to input RGB-D data and
regressing 6D pose directly. The instance-outside noise is
handled in the first denoising step. For an input RGB-D im-
age, we perform instance segmentation with Mask R-CNN
to filter out the instance-outside pixels in RGB, depth, Plain
UV, XY, NRM and corresponding position encoding(PE).
The above data is then fed into the second step, where we
introduce a depth denoising module and a depth reconstruc-
tion task to calibrate the features extracted from the output
of the first step. This second step facilitates more accu-
rate 6D pose regression by subsequent networks. We use
Uni6D’s RT head to regress the 6D pose directly, while
regressing corresponding coordinates in CAD model by abc
head as the auxiliary training branch.

Instance-outside Noise Elimination. The most intuitive
and efficient choice to filter out the instance-outside noise is
directly discarding non-instance regions on the feature map.
However, this feature-level operation falls short of entirely
removing the background feature noise, as the deep fea-
tures in CNN have a receptive field includes the surrounding

background information. To comprehensively address this
problem, instance-outside noise must be filtered out at the
image level. We adopt Mask R-CNN to obtain the bound-
ing boxes and segmentation results for all instances in the
input RGB-D image, allowing us to crop RGB-D patches
based on these bounding boxes to eliminate the majority
of the instance-outside noise. And the rest of instance-
outside noise, which remains in the bounding box, is further
removed by masking cropped patches with segmentation
results. Corresponding Plain UV, XY, and NRM and PE are
also cropped and masked.

Instance-inside Noise Elimination. As shown in Fig. 1(b),
the instance-inside noise includes holes and numerical er-
rors in the depth image, which limit the performance of the
6D pose estimation. A widely used method to address this
problem is to utilize the classical processing algorithm(Ku
et al., 2018) to fill the holes in the raw depth image be-
fore regressing the 6D pose. However, the numerical errors
in the filled pixels still persist due to the non-parametric
pre-processing method. To handle the instance-inside noise
more effectively, we propose a learnable parametric depth
denoising module with a noiseless depth estimation task to
calibrate the depth information in the features. As shown in
the second step of Fig. 2, features extracted from RoI Align
are fed into our depth denoising module before being used
to regress the 6D pose. We also incorporate an auxiliary
reconstruction task to help the depth denoising model con-
verge better. It uses a 1× 1 convolutional layer to regress
the noiseless depth, XY, and NRM simultaneously. The
labels of the noiseless depth, XY, and NRM are obtained
by re-projection from the CAD model. These re-projected
labels can be calculated as follows:xy

d

 = R∗ ×

ab
c

+ T ∗. (1)

For an input visible point (a, b, c) in the CAD model, we
apply the ground truth rotation matrix R∗ ∈ SO(3) and
the translation matrix T ∗ ∈ R3 to project it to the corre-
sponding position (x, y, d) in camera coordinate system
and obtain the re-projected depth and XY. This lightweight
depth denoising module can effectively calibrate depth in-
formation in features without reducing inference efficiency
significantly.

3.3 Loss Function

The loss function of the overall network consists of the loss
functions from both steps. Initially, the Mask R-CNN is
trained with its original loss (He et al., 2017). Following
this, we freeze the parameters of the first step and train the
network in the second step with the RT regression loss, the
abc regression loss, and the novel depth denoising loss. The
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Figure 2: Architecture overview of Uni6Dv2. Uni6Dv2 consists of two denoising steps: the first step removes instance-
outside noise by adopting the Mask R-CNN to crop and mask the information about the instance, while the second step
removes the instance-inside noise by utilizing a depth denoising module and a depth information estimation auxiliary task
to calibrate the depth feature before the 6D pose regression. The auxiliary supervision labels D

′
, XY

′
and NRM

′
are

calculated by projecting the CAD model with the rotation and translation ground truth.

RT regression loss Lrt is defined as:

Lrt =
1

m

∑
x∈O
||(Rx+ T )− (R∗x+ T ∗)||, (2)

where O denotes the vertex set of object’s points from the
3D model, R and T are the rotation matrix and the transla-
tion vector, ∗ denotes the ground truth and m is the number
of points in O. The abc regression loss is:

Labc = |a− a∗|+ |b− b∗|+ |c− c∗|, (3)

where (a, b, c) are the coordinates of visible points. The
depth denoising loss is:

Ldepth =|d− d∗|+ |x− x∗|+ |y − y∗|+
|nx − n∗x|+ |ny − n∗y|+ |nz − n∗z|,

(4)

where d is the depth, (nx, ny, nz) is the coordinate of depth
normal calculated from depth, and (x, y) is the visible
point’s coordinate in camera coordinate system. Finally,
the overall loss function of the second step is:

L = λ0Lrt + λ1Labc + λ2Ldepth, (5)

where λ0, λ1 and λ2 are the weights for each loss.

4 EXPERIMENTS

4.1 Benchmark Datasets

We compare the proposed method with others on three
benchmark datasets.

YCB-Video(Calli et al., 2015) contains 92 RGB-D videos
with 21 YCB objects, which has depth noise and occlusions.

Following previous work(Xiang et al., 2018; He et al., 2020;
Wang et al., 2019; Jiang et al., 2022), we add synthetic
images for training and the synthetic ratio is 83.17%. We
also apply the hole completion algorithm used in(He et al.,
2020; Jiang et al., 2022) to improve depth images.

LineMOD(Hinterstoisser et al., 2011) contains 13 videos
of 13 low-textured objects. Following previous works(Peng
et al., 2019b; Xiang et al., 2018; He et al., 2020; Jiang et al.,
2022), we also add synthetic images for training and the
synthetic ratio is 99.71%.

Occlusion LineMOD(Brachmann et al., 2014) is selected
from the LineMOD dataset, which has heavily occluded
objects, making the scenes more challenging.

4.2 Evaluation Metrics

We use the average distance metrics ADD and ADD-S to
evaluate our method, following(Xiang et al., 2018; Wang
et al., 2019; He et al., 2021; Jiang et al., 2022). The ADD
metric(Hinterstoisser et al., 2012) is calculated as follows:

ADD =
1

m

∑
x∈O
||(Rx+ T )− (R∗x+ T ∗)||, (6)

where m is the total vertex number, x indicates any vertex
of the 3D model O, [R, T ] and [R∗, T ∗] are predicted pose
and ground truth pose respectively. The ADD-S is similar to
ADD, but is used to measure the performance of symmetric
objects, which is based on the closest point distance:

ADD-S =
1

m

∑
x1∈O

min
x2∈O

||(Rx1 + T )− (R∗x2 + T ∗)||.

(7)
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For convenience, the ADD(S) metric is introduced as fol-
lows:

ADD(S) =

{
ADD O is asymmetric

ADD-S O is symmetric
(8)

where O is the CAD model.

For YCB-Video dataset, the area under the accuracy-
threshold curve obtained by varying the distance threshold
with a maximum threshold of 0.1 meters (AUC ADD-S or
AUC ADD(S)) is reported, following previous works (Xiang
et al., 2018; Wang et al., 2019; He et al., 2020, 2021). For
LineMOD and Occlusion LineMOD datasets, the accuracy
of distance less than 10% of the objects’ diameter (ACC
ADD(S)-0.1d) is reported, following previous works (Peng
et al., 2019b; He et al., 2021)

4.3 Comparison with Other Methods

We compare our method with others on YCB-Video,
LineMOD, and Occlusion LineMOD datasets.

4.3.1 Evaluation on YCB-Video Dataset

We present the category-level results of the proposed
Uni6Dv2 on YCB-Video dataset in Table 1. Compared
with other methods, our approach advances state-of-the-art
results by 0.2% on the ADD-S metric and achieves 91.5% on
the ADD(S) metric. It is worth emphasizing that Uni6Dv2
comprehensively exceeds Uni6D, especially on objects with
fewer pixels. For example, "037_scissors" of Uni6Dv2
achieves 7.36% improvement on the ADD-S metric and
9.72% on the ADD(S).

4.3.2 Evaluation on LineMOD Dataset

Experimental results of LineMOD dataset are reported in
Table 2, our approach achieves 97.20% ACC ADD(S)-0.1d.
Compared with the original Uni6D, it improves the perfor-
mance in "ape", "benchvise", "cat", "driller", "duck", "glue",
"holepuncher" and "phone". Because the LineMOD dataset
has less depth noise and occlusion than the YCB-Video
dataset, our two-step denoising method make improvement
slightly.

4.3.3 Evaluation on Occlusion LineMOD Dataset

We train our model on the LineMOD dataset and evaluate
it on the Occlusion LineMOD dataset to obtain the perfor-
mance on occlusion scene. Experimental results of Occlu-
sion LineMOD are reported in Table 3. Compared with
Uni6D, our method obtains 9.44% improvement on the
ACC ADD(S)-0.1d metric, and the ACC ADD(S)-0.1d of
all categories have been improved.

Figure 3: Comparison of effectiveness and efficiency.

4.4 Time Efficiency

We compare the inference speed of our method with
PoseCNN(Xiang et al., 2018), DenseFusion(Wang et al.,
2019), PVN3D(He et al., 2020), FFB6D(He et al., 2021),
and Uni6D(Jiang et al., 2022) in Table 4 and Fig. 3. Our
method achieves 21.27 FPS which is 6× faster than FFB6D
(SOTA of keypoint-based methods). Compared with Uni6D
(SOTA of RoI-based methods), our methods only sacrifices
17% efficiency to achieve significant gains, especially with-
out real training data in Table 9 (+20.11% ADD-S and
+29.48% ADD(S)). More specifically, the first and second
steps of our method take 35ms and 12ms, respectively. The
extra computation primarily concentrated in the backbone of
the second step, causing our method to perform somewhat
slower than Uni6D.

4.5 Ablation Study

4.5.1 Effect of Noise Elimination

To investigate the contribution of the proposed noise elimina-
tion operations, we superimpose these denoising operations
gradually. In this comparison, we divide instance-outside
noise into noise within and out of the detection bounding
box, and eliminate them by cropping and masking. Uni6D
without any denoising operation is our baseline. In Table 5,
"Box" denotes cropping the input data by detection bound-
ing boxes to eliminate noise in the background out of the
box. "Mask" means filtering out the background noise in the
box, and "Depth" denotes calibrating the depth feature with
the depth denoising module. "Box" and "Mask" are used
together for instance-outside noise elimination, and "Depth"
is used for instance-inside noise elimination. "Based on
GT" means using the ground truth of detection, segmen-
tation and reprojection depth to train the pose regression
model, it indicates that eliminating every noise increases
the upper bound on performance. "Based on DT" represents
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Table 1: Evaluation results on the YCB-Video dataset. Symmetric objects are denoted in bold.

PoseCNN(Xiang et al., 2018) DenseFusion(Wang et al., 2019) PVN3D(He et al., 2020) FFB6D(He et al., 2021) Uni6D(Jiang et al., 2022) Ours

Object ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S) ADD-S ADD(S)

002_master_chef_can 83.9 50.2 95.3 70.7 96 80.5 96.3 80.6 95.4 70.2 96.0 74.2
003_cracker_box 76.9 53.1 92.5 86.9 96.1 94.8 96.3 94.6 91.8 85.2 96.0 94.2
004_sugar_box 84.2 68.4 95.1 90.8 97.4 96.3 97.6 96.6 96.4 94.5 97.6 96.6
005_tomato_soup_can 81.0 66.2 93.8 8.47 96.2 88.5 95.6 89.6 95.8 85.4 96.1 86.6
006_mustard_bottle 90.4 81.0 95.8 90.9 97.5 96.2 97.8 97.0 95.4 91.7 97.8 96.7
007_tuna_fish_can 88.0 70.7 95.7 79.6 96.0 89.3 96.8 88.9 95.2 79.0 96.3 76.0
008_pudding_box 79.1 62.7 94.3 89.3 97.1 95.7 97.1 94.6 94.1 89.8 96.6 94.7
009_gelatin_box 87.2 75.2 97.2 95.8 97.7 96.1 98.1 96.9 97.4 96.2 98.0 97.0
010_potted_meat_can 78.5 59.5 89.3 79.6 93.3 88.6 94.7 88.1 93.0 89.6 95.7 91.9
011_banana 86.0 72.3 90.0 76.7 96.6 93.7 97.2 94.9 96.4 93.0 98.0 96.9
019_pitcher_base 77.0 53.3 93.6 87.1 97.4 96.5 97.6 96.9 96.2 94.2 97.5 96.9
021_bleach_cleanser 71.6 50.3 94.4 87.5 96.0 93.2 96.8 94.8 95.2 91.1 97.0 95.3
024_bowl 69.6 69.6 86.0 86.0 90.2 90.2 96.3 96.3 95.5 95.5 96.8 96.8
025_mug 78.2 58.5 95.3 83.8 97.6 95.4 97.3 94.2 96.6 93.0 97.7 96.3
035_power_drill 72.7 55.3 92.1 83.7 96.7 95.1 97.2 95.9 94.7 91.1 97.6 96.8
036_wood_block 64.3 64.3 89.5 89.5 90.4 90.4 92.6 92.6 94.3 94.3 96.1 96.1
037_scissors 56.9 35.8 90.1 77.4 96.7 92.7 97.7 95.7 87.6 79.6 95.0 90.3
040_large_marker 71.7 58.3 95.1 89.1 96.7 91.8 96.6 89.1 96.7 92.8 97.0 93.1
051_large_clamp 50.2 50.2 71.5 71.5 93.6 93.6 96.8 96.8 95.9 95.9 97.0 97.0
052_extra_large_clamp 44.1 44.1 70.2 70.2 88.4 88.4 96.0 96.0 95.8 95.8 96.5 96.5
061_foam_brick 88.0 88.0 92.2 92.2 96.8 96.8 97.3 97.3 96.1 96.1 97.4 97.4

Avg 75.8 59.9 91.2 82.9 95.5 91.8 96.6 92.7 95.2 88.8 96.8 91.5

Table 2: Evaluation results (ACC ADD(S)-0.1d) on the LineMOD dataset. Symmetric objects are denoted in bold.
PoseCNN(Xiang et al., 2018) DenseFusion(Wang et al., 2019) PVN3D(He et al., 2020) FFB6D(He et al., 2021) Uni6D(Jiang et al., 2022) Ours

ape 77.0 92.3 97.3 98.4 93.71 95.71
benchvise 97.5 93.2 99.7 100.0 99.81 99.90
camera 93.5 94.4 99.6 99.9 95.98 95.78
can 96.5 93.1 99.5 99.8 99.02 96.01
cat 82.1 96.5 99.8 99.9 98.10 99.20
driller 95.0 87.0 99.8 100.0 99.11 99.21
duck 77.7 92.3 97.7 98.4 89.95 92.11
eggbox 97.1 99.8 99.8 100.0 100.00 100.00
glue 99.4 100.0 100.0 100.0 99.23 99.61
holepuncher 52.8 92.1 99.9 99.8 90.20 92.01
iron 98.3 97.0 99.7 99.9 99.49 97.96
lamp 97.5 95.3 99.8 99.9 99.42 98.46
phone 87.7 92.8 99.5 99.7 97.41 97.69
Avg 88.6 94.3 99.4 99.7 97.03 97.20

the performance of our method without any ground truth
leaking. We observe that eliminating every type of noise
leads to an improvement in performance. Specifically, using
the first denoising step to remove instance-outside noise
leads to a 1.34% and 1.44% improvement on ADD-S and
ADD(S), respectively, while the second denoising step fur-
ther improves performance by 0.25% on ADD-S and 0.24%
on ADD(S).

4.5.2 Comparison of Denoising Strategies

To further investigate the effect of our two-step denois-
ing method, we compare various strategies for removing
instance-outside and instance-inside noise.

For instance-outside noise elimination, there are two op-
tional strategies: feature-level and image-level denoising.
The feature-level denoising crops and masks the feature map
directly, which can reduce computational complexity. How-
ever, it does not completely eliminate the noise from the
background around the instance introduced by the receptive
field, which limits the denoising performance. As shown in

Table 6, we adopt the image-level denoising in the first step,
which brings 0.27% improvement on ADD-S and 1.06%
on ADD(S) compared to feature-level denoising. Another
advantage of using image-level denoising strategy is that it
allows us to avoid introducing UV information in the input
of instance segmentation network. The UV information can
break the convolution translation invariance and negatively
affects the quality of detection and segmentation. To evalu-
ate the effect of UV input for Mask-RCNN, we compare the
performance of using RGB-D and RGB-D with UV input
for Mask-RCNN. As shown in Table 7, introducing UV in
Mask R-CNN reduces the performance and using RGB-D
image as the input data is better.

For instance-inside noise elimination, we explore the effect
of adding different depth-related information as the super-
vised labels, including the re-projected depth, XY and NRM.
Results in Table 8 demonstrate that using all depth-related
information strengthen the effect of denoising, which brings
0.25% improvement on ADD-S and 0.28% on ADD(S) for
the YCB-Video dataset.



Uni6Dv2: Noise Elimination for 6D Pose Estimation

Table 3: Evaluation results (ACC ADD(S)-0.1d) on the Occlusion LineMOD dataset. Symmetric objects are denoted in bold.

Method PoseCNN(Xiang et al., 2018) PVN3D(He et al., 2020) FFB6D(He et al., 2021) Uni6D(Jiang et al., 2022) Ours

ape 9.6 33.9 47.2 32.99 44.26
can 45.2 88.6 85.2 51.04 53.33
cat 0.9 39.1 45.7 4.56 16.70
driller 41.4 78.4 81.4 58.40 63.02
duck 19.6 41.9 53.9 34.80 38.09
eggbox 22.0 80.9 70.2 1.73 4.60
glue 38.5 68.1 60.1 30.16 40.27
holepuncher 22.1 74.7 85.9 32.07 50.93
Avg 24.9 63.2 66.2 30.71 40.15

Table 4: Time cost and frames per second (FPS) on YCB-
Video Dataset.

Method Network/ms Post-process/ms All/ms FPS

PoseCNN(Xiang et al., 2018) 200 0 200 5
DenseFusion(Wang et al., 2019) 50 10 60 16.67

PVN3D(He et al., 2020) 110 420 530 1.89
FFB6D(He et al., 2021) 20 260 280 3.57

Uni6D(Jiang et al., 2022) 39 0 39 25.64
Ours 47 0 47 21.27

Table 5: Comparing different types of denoising on the
YCB-Video dataset.

Denoising level Based on GT Based on DT

Box Mask Depth ADD(S) ADD-S ADD(S) ADD-S

- - 95.18 88.83
X 96.39 90.58 96.01 89.80
X X 96.85 91.55 96.52 91.27
X X X 97.67 92.52 96.77 91.51

4.5.3 Advantage of Reducing Real Data
Requirements

To verify the advantage of two denoising strategies in re-
ducing real data requirements, We randomly sample 0%,
1% and 10% of the available real training data and fused
it with synthetic data to create new training datasets, the
test dataset keeps the original setting. The gains from re-
moving instance-outside noise and instance-inside noise are
shown in Table 9, where "0%" indicates training models
only with synthetic data. Since all synthetic depth images
are randomly masked in order to simulate holes in the real-
istic depth images, it is required to eliminate instance-inside
noise even when training only with synthetic data. Com-
pared with the baseline (Uni6D), individually removing the
two types of noise achieves significant improvements and
removing both achieves SOTA. Especially when training
without real data, removing instance-outside noise gains
19.96% on ADD-S and 29.27% on ADD(S), and removing
instance-inside noise gains 19.38% on ADD-S and 29.08%
on ADD(S).

Table 6: Comparing different denoising strategies for
instance-outside noise on the YCB-Video dataset.

Denoising strategy ADD-S ADD(S)

no denoising 95.18 88.83
feature-level denoising 96.25 90.21
image-level denoising 96.52 91.27

Table 7: Comparing different inputs of Mask-RCNN on the
YCB-Video dataset.

Input of Mask-RCNN mIoU ADD-S ADD(S)

RGB-D with UV 78.15 96.52 91.28
RGB-D 80.43 96.77 91.51

4.6 Qualitative Results

For intuitive comparison, the qualitative results of Uni6Dv2
and the baseline Uni6D(Jiang et al., 2022) as well as the
SOTA FFB6D(He et al., 2021) on the YCB-Video dataset
are shown in Fig. 4, with failed results framed by the bound-
ing box. Uni6Dv2 achieves a more precise and robust result
when there are more noise interference. More qualitative
results on the LineMOD dataset are provided in our supple-
mentary materials.

4.7 Denoising on Other RoI-based Methods

We take the latest RoI-based method ES6D(Mo et al., 2022)
as an example, which feeds cropped RGB images and

Table 8: Comparison of instance-inside denoise strategies
on the YCB-Video dataset.

Depth Denoise XY Denoise NRM Denoise ADD-S ADD(S)

96.52 91.27
X 96.51 90.30
X X 96.74 91.26
X X 96.74 91.23
X X X 96.77 91.51
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Figure 4: Qualitative results of 6D pose on the YCB-Video dataset.

Table 9: The superiority of the proposed method in reducing
real data requirements on the YCB-Video dataset.

Denoising Percentage of real training data

outside inside 100% 10% 1% 0%

95.18/88.83 91.84/81.47 89.95/77.98 73.52/54.71
X 96.52/91.27 95.48/87.59 93.73/84.37 93.48/83.98

X 95.77/89.75 94.14/85.80 93.49/83.99 92.90/83.79
X X 96.77/91.51 95.60/88.02 95.22/86.41 93.63/84.19

Table 10: Comparing different types of denoising for ES6D
on the YCB-Video dataset.

Denoising Metric

inside ADD-S ADD(S)

93.1 89.0
X 93.6(+0.5) 90.0(+1.0)

masked 3D coordinates maps into 6D pose estimator. With
the background depth removed, ES6D only suffers from the
instance-inside noise from depth sensors. Thus, we apply
our denoising method on ES6D to remove its instance-inside
noise, and the results are provided in Table 10. We observe
that removing instance-inside noise by depth denoising mod-
ule gains 0.5% on ADD-S and 1.0% on ADD(S).

4.8 Implementation Details

We adopt ResNet-50(He et al., 2016) and FPN(Lin et al.,
2017) for Mask R-CNN. The first convolutional layer’s
channels are set to 4 for the input RGB-D image. We trained

the models using 16 NVIDIA GTX 1080Ti GPUs, with three
images per GPU, for 40 epochs, using an SGD optimizer
with a momentum of 0.9 and weight-decay of 0.0001. The
initial learning rate is set to 0.005 with a linear warm-up.
and decreased by 0.1 after 15, 25 and 35 epochs. λ0 in the
loss function is set to 1 in epoch [1, 20), 5 in [20, 30), 20 in
[30, 38) and 50 in [38, 40], λ1 and λ2 are set to 1. Please
refer to our supplementary materials for more details.

5 CONCLUSION

In this paper, we improve Uni6D from the perspective of
denoising. We first investigate the instance-outside and
instance-inside noise which have severely limited the origi-
nal Uni6D’s performance. To address this issue, we present
Uni6Dv2, which employs a two-step denoising pipeline.
In the first step, an instance segmentation network is used
to filter out instance-outside noise, and in the second step,
a lightweight depth denoising module is used to correct
instance-inside noise. Extensive experimental results show
that our method outperforms other state-of-the-art methods
and improves the performance of the original Uni6D with
only a slight decrease in inference efficiency.

As limitations, more elegant denoising methods beyond
cropping and masking from RGB-D data should be investi-
gated. Furthermore, our method still suffers from the trans-
lation distribution gap between training and testing datasets
(the model is hard to generalize to different 3D positions),
which is a common issue for direct regression methods.
More efficient and effective innovative methods need to be
explored to further fix this issue. Despite these limitations,
we believe that Uni6Dv2 can be a strong baseline approach
to 6D pose estimation and inspires future work.
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Supplementary Materials

6 Implementation Details

In this section, we first provide a detailed description of the re-projected depth, XY, and NRM in denoising module. Then
we describe the details of training on YCB-Video(Calli et al., 2015) and LineMOD(Hinterstoisser et al., 2011).

6.1 The details of the training phase

We provide the details of training on YCB-Video and LineMOD in Table 11 and Table 12. In each step, we use the ImageNet
pre-trained weights to initialize the backbone except the first convolutional layer. The first convolutional layer is initialized
by kaiming uniform because the number of channels is changed to accommodate to the new input. For some categories in
the LineMOD dataset, including "cat", "eggbox" and "glue", the mask operation is not applied to the position embedding
(PE).

Table 11: The details of the training on YCB-Video.

The first step The second step

Input data RGB-D RGB-D, UV, PE, XY, NRM

Augmentation

Multi-scale training: [320, 400,
480, 600, 720] (max size is 900);

Multi-scale training: [180, 200,
224, 250, 270] (max size is 360);

Background replacing: replace
the background of the synthetic data
with the real image background;

Background replacing: replace the
background of the synthetic data
with the real image background;

Random crop: 0.3 probability, and
keep all objects;

Random crop: 1.0 probability, ex-
pand detection box by 0.3 and keep
the object intact;
Mask dilation and erotion: 0.75
probability, the size of kernel random
from 3, 5 and 7.

Training

Pretrained weight: ImageNet; Pretrained weight: ImageNet;
Schedule: 40epoch, MultiStepLR
with [15, 25, 35] schedule and
0.1×decay;

Schedule: 40epoch, MultiStepLR
with [15, 25, 35] schedule and
0.1×decay;

Optimizer: SGD, momentum 0.9,
weight_deacy 0.0001, warm-up 4
epoch.

Optimizer: SGD, momentum 0.9,
weight_deacy 0.0001, warm-up 4
epoch.

Loss function

L = Lmask +Lbbox+Lcls+Lrpn L = λ0 · Lrt + Labc + Ldepth

λ0 is changed in training: 1-15 epoch
is 1, 16-25 epoch is 5, 26-35 epoch
is 10 and 36-40 epoch is 20.
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Table 12: The details of the training on LineMOD.

The first step The second step

Input data RGB-D RGB-D, UV, PE, XY, NRM

Augmentation

Multi-scale training: [320, 400,
480, 600, 720] (max size is 900);

Multi-scale training: [180, 200,
224, 250, 270] (max size is 360);

Background replacing: replace
the background of the synthetic data
with the real image background;

Background replacing: replace the
background of the synthetic data
with the real image background;

Random crop: 0.3 probability, and
keep all objects.

Random crop: 1.0 probability, ex-
pand detection box by 0.3 and keep
target.

Training

Pretrained weight: ImageNet; Pretrained weight: ImageNet;
Schedule: 40epoch, MultiStepLR
with [15, 25, 35] schedule and
0.1×decay;

Schedule: 40epoch, MultiStepLR
with [15, 25, 35] schedule and
0.1×decay;

Optimizer: SGD, momentum 0.9,
weight_deacy 0.0001, warm-up 4
epoch.

Optimizer: SGD, momentum 0.9,
weight_deacy 0.0001, warm-up 4
epoch.

Loss function

L = Lmask +Lbbox+Lcls+Lrpn L = λ0 · Lrt + Labc + Ldepth

λ0 is changed in training: 1-15 epoch
is 1, 16-25 epoch is 5, 26-35 epoch
is 10 and 36-40 epoch is 20.

7 More Qualitative Results

We provide more qualitative comparison results between our method and the original Uni6D on LineMOD, which are shown
in Fig. 5. In addition, we recommend readers to watch the video from https://youtu.be/dhVq1uqSZoE, which shows a more
comprehensive comparison between our method and the Uni6D. Compared with Uni6D, our method achieves more precise
and robust performance.

Figure 5: Qualitative results of 6D pose on the LineMOD dataset.

https://youtu.be/dhVq1uqSZoE
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