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Automated defect inspection for specular surfaces is still a challenge in the manufacturing industry because 

of their specular reflection property. Deflectometry provides surface information based on the captured fringe 

patterns through the reflection of the specular surfaces and has been widely applied in defect detection for 

specular surfaces. Conventional methods combined deflectometry with machine learning approaches, but the 

hand-crafted features need to be defined for each specific task. Combined with the deep neural network, the input 

images are obtained from deflectometry, and the network completes the identification of the defects. Nevertheless, 

conventional deep-learning-based defect inspection methods approached the problem as a binary classification, or 

only certain obvious defects can be correctly classified. In this study, we generated and released, for the first time, 

to the best of our knowledge, the benchmark dataset named SpecularDefect9 with various defects for specular 

surfaces, and the classification accuracy of some kinds of defects may be low with only one kind of input image. 

To classify all kinds of defects accurately, the proposed method applied the light intensity contrast map combined 

with the original captured fringe pattern as the input of the network, and a fusion network was introduced to 

extract features from multi-modal inputs. Experimental results based on the released benchmark dataset verified 

the effectiveness and robustness of the proposed multi-modal defect classification method. 
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. Introduction 

Specular reflection materials, such as mirrors with high manufac-

ured accuracy, wafers, and specular vehicle surfaces, are widely ap-

lied in industries. Traditional defect inspection for specular surfaces

as usually performed by human-vision [ 1 , 2 ], which was subjective and

ime-consuming. 

Deflectometry [3–5] is a non-contact and full-field measurement

echnology for the shape reconstruction and defect inspection of specu-

ar surfaces. Combined with machine learning and deflectometry, defect

nspection methods have been introduced for many kinds of specular

urfaces, such as molded plastic parts [6] , car bumpers [7] , metal sheets

8] , and silicon wafers [9] . Nevertheless, different hand-crafted features

eed to be defined for each specific task in all the above methods, and

he generalization ability of these machine-learning-based methods is

imited. 

Defect detection methods with the deep neural network have been

idely applied in diffuse surfaces, such as concrete bridge surfaces [10] ,

abric [11] , and power line insulators [12] . Diffuse surfaces can be di-
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ectly captured by cameras and utilized as the inputs of the network.

owever, the directly captured images of specular surfaces are unsuit-

ble for the network because of the specular reflection property. To solve

his challenge, the deflectometry system uses a liquid crystal display

LCD) as the active target to display sinusoidal fringe patterns. The cam-

ras capture the deformed patterns via the reflection of the inspected

pecular surfaces, which contain abundant geometrical and textural in-

ormation. The local curvature map and light intensity contrast map

13] can be obtained based on the captured images, which are mean-

ngful in defect inspection for specular surfaces. Combining the light

ntensity contrast map with the local curvature map, Maestro-Watson

t al. [14] proposed a simple network for defect detection in specular

urfaces and then introduced a data segmentation method [15] for spec-

lar surface inspection with a fully convolutional network. However, all

he two methods simply predicted the parts as “ok ” or “nok ”, which only

chieved a binary classification. Zhou et al. [16] proposed an end-to-end

ttention-based fully convolutional neural network named “DeepInspec-

ion ” for automotive parts. Nevertheless, the network can only classify

he obvious geometrical defects like pits and scratches. Based on one
University, Shanghai 200240, China. 
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Fig. 1. Two main existing fusion strategies:(a) image-level fusion;(b) feature-level fusion. 
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ight intensity contrast map, Guan et al. [17] introduced a network that

an detect both geometrical defects like scratches, scuffings, and textu-

al defects like stains and fingerprints but the defects can still be dis-

inguished with only one input image. Qi et al. [18] proposed a phase-

odulation combined network for accurate defect detection of specular

urfaces. The network has a dual branch, and the inputs are the phase-

hifting pattern sequence and the light intensity contrast map. However,

he phase-shifting sequence is processed by three-dimensional convolu-

ion kernels, which are of high computational complexity, and the final

rediction of the network can only classify defect and non-defect areas.

Inspired by the above methods, the light intensity contrast map can

ffectively describe the defect features on specular surfaces, but using

nly single modal information, some confusing defects (e.g., hair and

cratch) cannot be clearly identified. The captured fringe patterns are

ecessary for obtaining auxiliary modal information. The ability to clas-

ify multiple defects can be further improved by coupling the features

rom the light intensity contrast map and the original fringe pattern.

ntuitively, the proposed method tries to make the best of two differ-

nt modal inputs, enforcing the complementary information learning

etween light intensity contrast maps and captured fringe patterns. As

hown in Fig. 1 , the main existing fusion strategies include image-level

usion and feature-level fusion. Nevertheless, the image-level fusion

trategy is limited in learning the complementary information between

harply different modalities, which may even lead to a decrease in accu-

acy [19] . The feature-level fusion approach adaptively selects the useful

eatures extracted from images of different modalities and further im-

roves the accuracy due to the adequation of sufficient modality-aware

eatures [20] . 

In this paper, the proposed method combines deflectometry and the

eep neural network to classify multiple kinds of defects on specular

urfaces. The main contribution of the study is as follows: 

1) To the best of our knowledge, the benchmark defect dataset for

specular surfaces named SpecularDefect9 1 is generated and released

based on the deflectometry for the first time. 

2) The multi-modal feature fusion network structure was proposed to

further extract the image features from different modalities. The

light intensity contrast map and the original fringe pattern are com-

bined as the input of the network. 

The benchmark dataset contains nine kinds of defects, including both

eometrical defects and textural defects. Moreover, some defects in the
1 The dataset is publicly available for download at 

ttps://tanasguan.github.io/SpecularDefect9/ 

w  
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a  

2 
ataset, like hairs, fibers, and scratches, may be difficult to classify with

nly one light intensity contrast map. Then, the multi-modal inputs are

rocessed by the dual branch backbone. The features from the original

ringe pattern are compressed and fused with the features from the light

ntensity contrast map by the fusion module. Furthermore, the convolu-

ional block attention module [21] is used for adaptive feature refine-

ent. Experimental results on the benchmark dataset verify that com-

ared with conventional methods, the classification accuracy based on

he proposed defect classification method is improved, and the multi-

odal network is effective for the defect classification of specular sur-

aces. 

. Principle 

The proposed defect classification method is shown in Fig. 2 . The

rocedure of the proposed classification method can be divided into

wo parts. The deflectometry system is the first part, which consists of

 camera and an LCD screen. The LCD screen is applied as the active

arget to display sinusoidal fringe patterns while the camera captures

he virtual image of the fringe patterns via the reflection of the specu-

ar surface. The light intensity contrast map is calculated based on the

aptured fringe images. Then, the light intensity contrast map and the

riginally captured fringe image are combined as the input of the deep

eural network. The second part is the proposed multi-modal fusion net-

ork, which accomplishes defect identification and classification work

n specular surfaces. The proposed network has a dual-branch backbone

o extract the features from the two modal input images, respectively.

inally, the features are fused by the fusion module and then processed

y the prediction head to obtain the final defect classification results. 

.1. Principle of deflectometry system 

The basic principle of deflectometry is the law of reflection. The

hase-shifting patterns displayed on the LCD screen 𝐼 n ( 𝑥, 𝑦 ) can be ex-

ressed as: 

 n ( 𝑥, 𝑦 ) = 𝑎 ( 𝑥, 𝑦 ) + 𝑏 ( 𝑥, 𝑦 ) ⋅ cos 
[
𝜙( 𝑥, 𝑦 ) + 

2 𝜋𝑛 
𝑁 

]
, 𝑛 = 1 , 2 , ..., 𝑁, (1)

here 𝑎 ( 𝑥, 𝑦 ) , 𝑏 ( 𝑥, 𝑦 ) and 𝜙( 𝑥, 𝑦 ) are the background intensity, modula-

ion intensity, and phase of fringes, respectively. N denotes the number

f phase-shifting steps. Increasing the number of phase-shifting steps

ill effectively suppress the non-linear and random errors in the further

alculation based on the fringe patterns. However, the measurement ef-

ciency will decrease with the increasing phase-shifting steps. To bal-

nce quality and efficiency, we select 𝑁 = 8 in the proposed method.

https://tanasguan.github.io/SpecularDefect9/
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Fig. 2. Illustration of the defect classification method. 

Fig. 3. Fringe images capture on (a) ideal specular surface and (b) specular surface with defects. 

Fig. 4. Convex defects on different parts of fringe patterns. 
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Fig. 5. Illustration of (a) original fringe pattern and (b) light intensity contrast 

map. 
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he captured fringe patterns 𝐼 ′
𝑛 
( 𝑥, 𝑦 ) are shown as follows: 

 

′
𝑛 
( 𝑥, 𝑦 ) = 𝐼 ′

𝑏𝑖𝑎𝑠 
( 𝑥, 𝑦 ) + 𝐼 ′

𝑚𝑜𝑑 
( 𝑥, 𝑦 ) ⋅ cos 

[
𝜙( 𝑥, 𝑦 ) + 

2 𝜋𝑛 
𝑁 

]
, 𝑛 = 1 , 2 , ..., 𝑁, (2)

here 𝐼 ′
𝑏𝑖𝑎𝑠 

( 𝑥, 𝑦 ) , 𝐼 ′
𝑚𝑜𝑑 

( 𝑥, 𝑦 ) are the bias intensity and modulation intensity

erms, respectively. 

As shown in Fig. 3 , the camera captures the fringe patterns via the

eflection of the specular surface. When the surface has some defects

ike convex defects, as demonstrated in Fig. 3 (b), the reflected fringe

atterns will have a phase change, and the captured fringe patterns will

ave different features compared with the ideal specular surface, which

an be applied to detect defects. 

Nevertheless, as shown in Fig. 4 , the different part of fringe patterns

as different intensity, which will cause different image features even

n the same defect. 

The principle of the light intensity contrast map is the modulation

ntensity changing caused by defects. Both geometrical and textural de-

ects will alter the amount of reflected light. The modulation intensity

 

′
𝑚𝑜𝑑 

( 𝑥, 𝑦 ) is usually low when the defects appear while the 𝐼 ′
𝑚𝑜𝑑 

( 𝑥, 𝑦 ) is
table on the ideal specular surface. Therefore, the light intensity con-

rast map can be used to detect both geometrical and textural defects
3 
nd can be calculated [17] as: 

( 𝑥, 𝑦 ) = 

𝐼 ′
𝑚𝑜𝑑 

( 𝑥, 𝑦 ) 
𝐼 ′
𝑏𝑖𝑎𝑠 

( 𝑥, 𝑦 ) 

= 

32 
√ (

𝐼 ′7 − 𝐼 ′3 + 𝐼 ′8 − 𝐼 ′4 + 𝐼 ′6 − 𝐼 ′2 
)2 + 

(
𝐼 ′1 − 𝐼 ′5 + 𝐼 ′2 − 𝐼 ′4 + 𝐼 ′8 − 𝐼 ′6 

)2 
(1 + 

√
2 ) 

8 ∑
𝑖 =1 

𝐼 ′
𝑖 

, 

(3) 

here 𝛾( 𝑥, 𝑦 ) denotes the light intensity contrast map and 𝐼 ′
𝑖 

is the 𝑖 -th

aptured fringe image. 

Fig. 5 illustrates the comparison between the original fringe pattern

nd the calculated light intensity contrast map. As shown in Fig. 5 (b),

he light intensity contrast map clearly shows the different kinds of de-

ects (dirt, fiber, dirt, scratch, etc.) and removes the effect of the sinu-

oidal pattern background. 
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Fig. 6. Hard case among (a) scratch, hair, and fiber; (b) dirt and concave defect. 
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Fig. 8. Original fringe patterns of (a) dirt, and (b) concave defect. 
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Though both geometrical and textural defects can be shown on the

ight intensity contrast map, there are still some hard case defects, which

ay have low classification accuracy based on only one light intensity

ontrast map. As shown in Fig. 6 (a), scratch, hair, and fiber defects are

inear-like defects. The straight scratch and hair are hard to distinguish,

hile the curved scratch and fiber are difficult to classify accurately only

ased on the light intensity contrast map. The dirt and concave defect

n the light contrast map are both like the black spot defect, as shown

n Fig. 6 (b), which also challenges the classification method. 

As demonstrated in Eq. (3) , the light intensity contrast map only

reserve the light intensity information, and the phase information is

ost. As shown in Fig. 7 , the hair and fiber are diffuse reflection defects,

n which area the camera cannot capture the reflected fringe patterns. In

he area of scratch, the defect area can partly reflect the pattern because

he specular reflection is not entirely destroyed by the scratch. 

Similarly, the dirt is a textural defect, which will have no influence

n phase change, while the concave defect is geometrical, and the cam-

ra will capture the deformed fringe images. Fig. 8 demonstrates that

he dirt area has no reflection of the fringe patterns, while the captured

ringe image around the concave defect has a phase change. 

Based on the above analysis, we claim that the combination of the

ight intensity contrast map and the captured fringe pattern provides

ore information for the network. However, the additional informa-

ion may be processed as noise and decrease the classification accuracy

nstead. Hence, the designed multi-modal fusion network is of vital im-

ortance for better feature extraction and fusion. 

.2. Principle of proposed fusion network 

A novel multi-modal fusion deep architecture is derived, which is

onsisted of the encoder module, multi-modal fusion module, feature

yramid network (FPN) [22] , and decision module, as shown in Fig. 9 . 

The proposed network employs dual-branch ResNet-18 [23] as the

ncoder and obtains features of low level, medium level, and high level,

hich have the feature size of 128 × 16 × 16 , 256 × 8 × 8 , and 512 × 4 × 4 ,
4 
espectively. The features from different modalities are then processed

y the fusion module to combine the multi-modal information. 

As shown in Fig. 10 , referring to the dynamic fusion module in Ref.

24] , the proposed feature fusion module mainly includes three sub-

odules: channel reduction, channel fusion, and adaptive feature se-

ection. The channels of the features from the fringe pattern are firstly

educed by the 1 × 1 convolution kernel and concatenated with the fea-

ures from the light intensity contrast map. The concatenated features

re then filtered by the 3 × 3 convolution kernel and passed to the adap-

ive feature selection module. The features are processed by the global

daptive pooling (GAP), 1 × 1 convolution kernel, and Sigmoid activa-

ion function, respectively. Finally, the original fused features are then

ultiplied with the processed features. 

As shown in Fig. 11 , the fused features from the fusion module are

ed into FPN for multi-scale feature fusion. The channels of the multi-

evel features are firstly reduced by 1 × 1 convolution kernel. The higher-

evel features are up-sampled and added with the lower-level features.

he max pooling layer is applied to down-sampling the fused features,

nd then the multi-level features are concatenated to obtain the decision

eatures which have the size of 96 × 4 × 4 . The decision features are then

rocessed by the GAP and the fully connected (FC) layer to obtain the

nal 10 × 1 decision result, representing the predicted probability of the

ine defects and the non-defect area, respectively. 

.3. Principle of benchmark dataset generation 

To evaluate the proposed defect classification method, this study

enerated a benchmark defect dataset of the specular surfaces for the

rst time. The deflectometry system is established to acquire the dataset

nd demonstrated in Fig. 12 . An LCD screen (AOC 24P1U, resolution of

920 × 1080 pixels, pixel pitch of 0.273 mm) is employed as the active

arget. The two cameras are CCD sensors (BASLER acA2440-20gm with

 resolution of 2448 × 2048 pixels and pixel pitch of 3.45 μm), and the

amera lenses (MORITEX ML-MC16HR) have a focal length of 16 mm.

o be mentioned, for defect classification in two dimensions (2D), only

he captured images from camera1 are used in the dataset, but this study
Fig. 7. Original fringe patterns of (a) scratch, 

(b) hair, and (c) fiber. 
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Fig. 9. Architecture of the proposed multi-modal fusion network. 

Fig. 10. Details of the fusion module. 

Fig. 11. Details of the FPN and decision module. 
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ollected the fringe images from both two cameras for further study of

he three-dimensional (3D) defect classification for specular surfaces in

uture work. 

After the stereo camera calibration [25] and system geometrical

arameters calibration [26] , the details of the system parameters are
hown in Table 1 . E  

5 
For collecting the surface information, the LCD screen displays the

ringe patterns with the fringe numbers 225, 224, and 210 in vertical

nd horizontal directions, respectively. The number of phase-shifting

teps for each fringe frequency is set to 8. Therefore, for each camera,

8 fringe images are captured for the tested specular surface in total.

ach 8-step phase-shifting fringe sequence in the same frequency can
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Fig. 12. Illustration of the deflectometry system. 

Table 1 

Details of the deflectometry system parameters. 

System parameters Value 

Mean reprojection error camera1:0.061 pixel ; camera2: 0.059 pixel 

Baseline distance 116 mm 

Geometrical transformation 

(LCD to camera1) 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 . 9950 −0 . 0019 −0 . 1000 −290 . 0302 
0 . 0039 0 . 9999 0 . 0116 −34 . 6549 
0 . 1000 −0 . 0119 0 . 9949 190 . 3450 

0 0 0 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
Work distance 

(Camera1 to work plane) 

348.6 mm 

Lateral resolution 75.2 𝑢𝑚 

Gradient resolution 7 . 1 × 10 −5 rad 

Height resolution 2.5 nm 

o  

m  

f
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Fig. 14. Statistics of the diagonal length of the bounding box in the dataset. 
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d  

d  
btain one light contrast intensity map, and the light contrast intensity

ap in the dataset is calculated based on the eight fringe images with

ringe numbers of 225 in the vertical direction. 

For acquiring the defect dataset, 554 float glass with an aluminized

ront surface and 553 polycarbonate mirrors, which have plastic defor-

ation properties and are suitable for making concave and convex de-

ects. Nine kinds of defects are hand-crafted on specular surfaces. The

aptured fringe image and the calculated light intensity contrast map

re shown in Fig. 13 . 
Fig. 13. (a) Light intensity contrast map and (

6 
The combination of the light intensity contrast map and the fringe

mage was used to improve the accuracy of defects annotation. The

uantity statistics of the dataset are shown in Table 2 . 

Fig. 14 shows the statistics of the diagonal length of the annotated

efect bounding box. 

To evaluate the annotation quality of the dataset, the dataset is ran-

omly sampled, and then two annotation experts annotate the sampled

ataset independently. The union of the two expert annotation results
b) fringe image of defects in the dataset. 
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Table 2 

Quantity statistics of the defect dataset. 

Dirt Fingerprint Hair Fiber Scratch Staggered scratch Scuffing Concave defect Convex defect 

Training 1544 457 460 2266 590 277 448 923 914 

Testing 629 202 204 891 250 125 197 401 392 

Table 3 

Annotation quality statistics of the defect dataset. 

Dirt Fingerprint Hair Fiber Scratch Staggered scratch Scuffing Concave defect Convex defect 

Recall 97.7% 100% 100% 99.3% 99.3% 100% 100% 99.0% 98.9% 

FPR 4.6% 0% 0% 0.7% 0.7% 0% 0% 0.9% 0.9% 

Table 4 

Hyper-parameter sensitivity study for learning rate, batch size, and weight decay. 

Learning rate Accuracy Batch size Accuracy Weight decay Accuracy 

0.01 96.9 ± 0.1 16 96.5 ± 0.1 0.0001 96.9 ± 0.1 

0.02 96.9 ± 0.2 32 96.9 ± 0.3 0.0002 96.9 ± 0.2 

0.05 97.0 ± 0.1 64 97.0 ± 0.1 0.0005 97.0 ± 0.1 

0.10 96.8 ± 0.1 128 96.9 ± 0.1 0.0010 96.9 ± 0.3 

0.20 96.6 ± 0.1 256 96.6 ± 0.2 0.0020 96.8 ± 0.1 
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Fig. 15. Illustration of CAM for (a) dirt, (b) staggered scratch, (c) hair, (d) fin- 

gerprint, and (e) scuffing. 
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o  
s used as the ground truth data to calculate the recall, while the inter-

ection is utilized to obtain the false positive rate (FPR). The annotation

uality statistics are summarized in Table 3 . 

. Experiments 

For evaluating the performance of the proposed method, the pro-

osed multi-modal feature fusion network is compared with the input fu-

ion network and the single-modal network, which are based on the cap-

ured fringe pattern and the light intensity contrast map, respectively.

he network is trained and tested based on the benchmark dataset. For

he network training, we use stochastic gradient descent (SGD) opti-

izer with the input size of 128 × 128. The sensitivity study of hyper-

arameters has been done to train the network effectively and improve

he performance of the network. The detailed studies are summarized

n Table 4 , and finally, the network is trained with an initial learning

ate of 0.05, weight decay of 0.0005, and batch size of 64. 

The corresponding warm start epochs are 5 with initial warmup

earning rate of 0.001, and the total epochs are set to 31. We use poly

cheduling to decay the learning rate during the training process, as

hown in Eq. (4) . 

𝑟 = 𝑙𝑟 𝑏𝑎𝑠𝑒 ·
( 

1 − 

𝑖𝑡𝑒𝑟 

𝑡𝑜𝑡𝑎𝑙 _ 𝑖𝑡𝑒𝑟 

) 0 . 9 
, (4)

here 𝑙𝑟 𝑏𝑎𝑠𝑒 is the initial learning rate, 𝑖𝑡𝑒𝑟 is the current iteration, and

he total iteration can be calculated as 3816. 

Given a labeled classification dataset  = { ( 𝐱 𝑓𝑟𝑖𝑛𝑔𝑒 
𝑖 

, 𝐱 𝑙𝑖𝑔ℎ𝑡 
𝑖 

, 𝑦 𝑖 ) } 𝑁 

𝑖 =1 ,

here 𝑦 𝑖 represents the hand-annotated label for the 𝑖 -th image

 𝐱 𝑓𝑟𝑖𝑛𝑔𝑒 
𝑖 

, 𝐱 𝑙𝑖𝑔ℎ𝑡 
𝑖 

) . 𝐱 𝑓𝑟𝑖𝑛𝑔𝑒 
𝑖 

, and 𝐱 𝑙𝑖𝑔ℎ𝑡 
𝑖 

denote the captured fringe pattern and

he light intensity contrast map, respectively. The optimization target

s to train the defect classification model, and despite different meth-

ds, the standard cross-entropy (CE) loss is adopted as the loss function,

hich can be written as 𝓁 𝑐𝑒 ( 𝑝 𝑖 , 𝑦 𝑖 ) , where 𝑝 𝑖 stands for the softmax prob-

bilities generated by the model for the 𝑖 -th input. For the feature fusion

trategy, the whole loss function can be formulated as: 

 = 

1 
𝑁 

∑
(
𝐱 𝑓𝑟𝑖𝑛𝑔𝑒 
𝑖 

, 𝐱 𝑙𝑖𝑔ℎ𝑡 
𝑖 

,𝑦 𝑖 

)
∈ 

𝓁 𝑐𝑒 
(
𝑔◦𝑓 ( ℎ 1 ( 𝐱 

𝑓𝑟𝑖𝑛𝑔𝑒 

𝑖 
) , ℎ 2 ( 𝐱 

𝑙𝑖𝑔ℎ𝑡 

𝑖 
) , 𝑦 𝑖 

)
, (5)

here the different inputs ( 𝐱 𝑓𝑟𝑖𝑛𝑔𝑒 
𝑖 

, 𝐱 𝑙𝑖𝑔ℎ𝑡 
𝑖 

) are firstly fed into separate en-

oders ( ℎ 1 , ℎ 2 ) , and then 𝑓 for multi-modal feature fusion. 𝑔◦𝑓 denotes

he composition function of the decision module 𝑔 and the feature fusion

odule 𝑓 . 
7 
Several augmentation methods, such as horizontal flip, rotation, and

olor jitter, are applied to prevent overfitting in the training stage. All

xperiments are implemented based on the Python language and the

ramework of Pytorch (Facebook). The GPU of the operating system

s Nvidia GeForce GTX 1080Ti, which has an 11-GB dedicated display

emory size. 

.1. Qualitative and visualization analysis 

After network training, the network activation of different defects

s firstly evaluated. As shown in Fig. 15 , the class activation mapping

27] (CAM) of five kinds of defect instances is illustrated. From top to

ottom are the light intensity contrast map, the captured fringe pattern,

nd the CAM produced by the proposed model, respectively. The CAM

hows that the defect areas will have a more obvious activation than the

on-defect area, which demonstrates that the proposed network has a

reat ability in feature extraction. It is worth noting that, for the stag-

ered scratch defects, the proposed network focuses and has a significant

ctivation on the staggered area, as shown in Fig. 15 (b), which further

erifies that the proposed model can focus on the special features of

ach kind of defect. 

To further evaluate the defect classification ability of the proposed

usion network, the visualization of the feature spaces is obtained based

n the t-SNE [28] . For each kind of defect, 150 samples are randomly se-
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Fig. 16. Illustration of t-SNE for the single-modal network based on (a) only the fringe pattern, (b) only the light intensity contrast map, and (c) the multi-modal 

fusion network. 

Fig. 17. Hard case illustration of (a) scratch, and (b) concave defect. 
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a  
ected for visualization. The t-SNE of the single-modal network and the

ulti-modal network is shown in Fig. 16 . As demonstrated in Fig. 16 (a)

hat the model, only uses the fringe pattern, generating confusing de-

ision boundaries of features, which will lead to wrong classification

esults. The single-modal network based on the light intensity contrast

ap improves the distinguishability of features to a certain extent, as

hown in Fig. 16 (b). Nevertheless, some features from different defects

re still mixed. While the multi-modal network, which combines two

ifferent modalities of information, has much more clear ones in that

he features of the same defect are minified, and the distance among

ifferent defects is enlarged. Fig. 16 demonstrates the effectiveness of

he proposed feature fusion network from the feature point of view. 

Fig. 17 shows two instances of the hard case in the dataset. When

sing only the light intensity contrast map, the network gets comparable

redicted probabilities for different kinds of defects, which draws wrong

lassification results. Compared with the hair, the scratch area can still

artly reflect the fringe pattern, and concave defects will have a phase

hange around the defect area when compared with the textural defect

irt. Hence, the fringe pattern provides additional information for defect

lassification. As shown in Fig. 17 , based on the proposed multi-modal

usion network, the classification probabilities of the instance of scratch

nd concave defects are 99.97% and 99.92%, respectively. The proposed

ulti-modal fusion network shows a better ability to handle hard cases

han the single-modal network. 

.2. Quantitative analysis 

For quantitative performance analysis based on the proposed net-

ork, accuracy is used to evaluate different methods, and F1-Score is
8 
mployed to measure the performance in the specific category. A true

ositive (TP) represents the defects that are correctly classified. A false

ositive (FP) means non-defective areas are mistakenly classified as de-

ects, while a false negative (FN) is defective areas are mistakenly de-

ected as non-defective areas, and a true negative (TN) denotes that the

on-defective areas are correctly detected. Moreover, the precision rate

s generally used to evaluate the global accuracy of the model, while

he recall rate is the fraction of the correctly recognized true positives

ver the total number of actual positives. The precision and recall are

escribed as Eqs. (6) and (7) . 

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑃 
. (6)

𝑒𝑐𝑎𝑙𝑙 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑁 

. (7)

F1-Score is the harmonic average of precision and recall, and can be

xpressed as: 

 1 − 𝑆𝑐𝑜𝑟𝑒 = 

2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
. (8)

Accuracy is the ratio of the number of correctly classified samples to

he total number of samples, and can be described as: 

𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 

𝑇 𝑃 + 𝑇 𝑁 

𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 

. (9)

According to the discriminability of different classes, the defects are

ivided into two groups (difficult ones and simple ones), and then the

wo categories are evaluated separately. The simple categories contain

ingerprint, Staggered Scratch, and Scuffing, which can be accurately

lassified by human-vision based on only the light intensity contrast

ap. The difficult categories contain Dirt, Hair, Fiber, Scratch, Con-

ave, and Convex, which need additional information to improve the

lassification accuracy. 

In particular, all results are averaged over ten random seeds to draw

eliable conclusions. Table 5 shows the accuracy comparison with dif-

erent methods on the validation set. The mean and standard deviation

re calculated over ten random seeds. As demonstrated in Table 5 , the

ight intensity contrast map achieves a significantly better performance

han the captured fringe pattern, which improves the accuracy by 2.1%,

.9%, and 3.0% in three categories, respectively. The results prove the

uperiority of the light intensity contrast map. Due to the additional

nformation, the input fusion method outperforms the single-modal net-

ork in difficult categories. However, compared with the network based

n the light intensity contrast map, the input fusion network performs

orse in simple categories, and the accuracy decreases by 0.4%, which

xposes the shortness in information fusion of the input fusion network.

t is worth noting that, the feature fusion method obtains the best re-

ults under all settings, which indicates the effectiveness of multi-modal

nformation fusion. 

Table 6 shows the comparison of the F1-Score for all kinds of defects,

nd the bold defects indicate the difficult categories. As demonstrated
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Table 5 

Accuracy comparison with different methods. 

Methods 

Accuracy 

All categories Difficult categories Simple categories 

Captured fringe pattern only 94.6 ± 0.2 94.2 ± 0.2 96.4 ± 0.5 

Light intensity contrast map only 96.7 ± 0.1 96.1 ± 0.2 99.4 ± 0.2 

Input Fusion 96.6 ± 0.1 96.2 ± 0.2 99.0 ± 0.2 

Feature Fusion 97.0 ± 0.1 96.5 ± 0.1 99.5 ± 0.1 

Table 6 

F1-Score comparison with different methods. 

Defect 

F1-Score 

Captured fringe pattern only. Light intensity contrast map only Input Fusion Feature Fusion 

Dirt 90.5 ± 0.4 93.6 ± 0.5 93.5 ± 0.3 94.1 ± 0.4 

Fingerprint 99.3 ± 0.2 99.4 ± 0.2 99.2 ± 0.2 99.6 ± 0.1 

Hair 99.1 ± 0.2 98.3 ± 0.4 99.4 ± 0.2 99.6 ± 0.2 

Fiber 92.3 ± 0.2 95.0 ± 0.3 95.1 ± 0.3 95.3 ± 0.2 

Scratch 91.0 ± 0.8 96.2 ± 0.5 95.8 ± 0.5 96.4 ± 0.3 

Staggered Scratch 91.0 ± 1.2 99.1 ± 0.3 98.7 ± 0.5 98.9 ± 0.2 

Scuffing 99.4 ± 0.2 99.8 ± 0.1 99.5 ± 0.1 99.9 ± 0.1 

Concave 98.7 ± 0.2 98.9 ± 0.1 98.8 ± 0.2 99.0 ± 0.1 

Convex 98.0 ± 0.5 98.6 ± 0.2 98.7 ± 0.2 99.0 ± 0.2 

Table 7 

Ablation study on the channel reduction hyper-parameter 𝑟 . 

𝑟 

Accuracy 

All categories Difficult categories Simple categories 

1 96.9 ± 0.1 96.4 ± 0.1 99.3 ± 0.2 

2 96.9 ± 0.1 96.4 ± 0.1 99.4 ± 0.1 

4 96.9 ± 0.3 96.4 ± 0.3 99.4 ± 0.2 

8 97.0 ± 0.1 96.5 ± 0.1 99.5 ± 0.1 

16 96.8 ± 0.2 96.4 ± 0.2 99.3 ± 0.2 

Table 8 

Ablation study on different components in feature fusion module. 

Channel 

reduction 

module 

Adaptive feature 

selection module 

Accuracy 

All categories Difficult categories Simple categories 

96.8 ± 0.2 96.3 ± 0.2 99.3 ± 0.2 √
96.9 ± 0.1 96.4 ± 0.1 99.3 ± 0.2 √
96.9 ± 0.1 96.4 ± 0.1 99.3 ± 0.3 √ √
97.0 ± 0.1 96.5 ± 0.1 99.5 ± 0.1 
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n Table 6 , the feature fusion method achieves the best F1-Scores in all

ifficult categories and almost all simple categories, further proving the

obustness and superiority of the proposed multi-modal feature fusion

etwork. 

Table 7 is the ablation study result for verifying the effectiveness

f channel reduction. Hyper-parameter 𝑟 represents the rate of channel

eduction to 𝐹 𝐹𝑟𝑖𝑛𝑔𝑒 , and 𝑟 = 1 means the feature will not be reduced.

s shown in Table 7 , proper use of channel reduction can help achieve

etter results. In the experiments, the hyper-parameter 𝑟 is set with eight

s the default setting unless specifically stated. 

Table 8 shows the experiments to ablate each component of the fea-

ure fusion module step by step. As demonstrated in Table 8 , compared

o the baseline, the channel reduction module and channel selection

odule can bring additional accuracy gain, verifying the effectiveness

f the proposed feature fusion module. 

Following this result, these components are applied in all experi-

ents in Tables 5 and 6 . Finally, when adding all components together,

he proposed multi-modal feature fusion network achieves results un-

er all protocols with the accuracy of 97.0%, 96.5%, and 99.5% in all

ategories, difficult categories, and simple categories, respectively. 
9 
. Limitations and future work 

In this study, we proposed a multi-modal network to improve the fea-

ure extraction based on the combination of the light intensity contrast

ap and the captured fringe pattern. The experimental results demon-

trate that the defect classification accuracy is improved by the proposed

ethod to a certain extent but not significantly improved. The purpose

f the study is not to propose a state-of-the-art multi-modal network

or defect classification but to provide a new approach for the defect

lassification of specular surfaces. Hence, there are still two aspects that

an be further researched. Firstly, the proposed method only applies

ne captured fringe pattern as the information supplement, which still

as information lost. Extracting and utilizing the information from the

emporal fringe pattern sequence needs to be further studied. Then, the

enchmark dataset collects the fringe images from two cameras, and the

D defect classification only needs the information from one camera. In

he future, the 3D defect classification for specular surfaces combining

he information from the two cameras needs to be researched. 

. Conclusion 

Defect classification for specular surfaces is of vital importance in the

anufacturing industry. Conventional machine-learning-based defect

lassification methods lack generalization ability, while deep-learning-

ased methods are almost binary classifications or classifications of

bvious defects. In this study, the deflectometry system is established

or generating the benchmark defect dataset for specular surfaces, and

he dataset is released for the first time in the deflectometry area. The

ataset contains nine kinds of geometrical and textural defects. Further-

ore, some of the defects may have low classification accuracy with

nly one light intensity contrast map. To improve the classification ac-

uracy, the coupling images, which consist of the light intensity con-

rast map and the captured fringe pattern, are utilized as the input of

he network to provide abundant information for defect classification.

he multi-modal fusion network is constructed for better feature ex-

raction and fusion, which consists of the dual branch backbone, feature

usion module, convolutional block attention module, and the classifica-

ion head. After trials with ten random seeds on the benchmark dataset,

ompared with the single-modal network and the input-fusion network,

he proposed multi-modal feature fusion network performs the best, and

he final classification accuracy is (97 . 0 ± 0 . 1)% in all categories, which
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emonstrates the effectiveness and robustness of the proposed multi-

odal defect classification approach. 
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